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Abstract—Deploying AI-based functionalities to satellites en-
hances spacecraft autonomy but presents significant challenges
for the design of both hardware and software platforms. Ad-
vantages of onboard processing include secure and private
computing, the reduction of data uplink/downlink requirements,
autonomous anomaly detection and recovery, and in general
autonomous spacecraft operation. However, edge inference is
computationally intensive and has to be performed onboard
while sharing resources with other traditional applications, like
avionics, Attitude Orbit Control, and signal/telemetry processing.
To enable secure and energy-efficient AI-processing capabilities
without decreasing the performance of traditional applications,
it is necessary to take an holistic approach, jointly optimizing
the hardware and software components. To achieve these goals,
within the ISOLDE project, a space demonstrator is developed.
In this work, the general architecture and main components of
the demonstrator are presented, with a particular focus on the
AI applications under development. One of the main objectives
of the project is the achievement of technological sovereignty,
with open hardware and software solutions. Within this project,
a new Linux-capable platform based on RISC-V processors and
accelerators is developed, enabling the execution of traditional
and AI-based workloads on satellites. The project will target
hardware and software codesign to optimize the performance
of the platform, prioritizing energy efficient, secure and error
resilient computing, and will develop a set of applications to
demonstrate the capabilities of the platform.

Index Terms—RISC-V, Space Applications, Edge Inference,
Satellite Autonomy, Artificial Intelligence

I. INTRODUCTION

The ISOLDE project, funded by the Key Digital Technolo-
gies Joint Undertaking (KDT JU), aims to enhance European
high-performance RISC-V-based CPUs, achieving functional
and non-functional improvements to compete with or surpass
proprietary alternatives [1]. Advanced architectures, novel
accelerators, and reusable IPs will be developed, forming a
robust compute infrastructure for applications in automotive,

industrial, and aerospace domains. With the involvement of
leading EU companies and semiconductor manufacturers, the
project seeks to establish European sovereignty in semicon-
ductors, close the confidence gap, and drive adoption through
prototype solutions, documentation, and benchmarks.

Within this project a demonstrator is developed targeting
the space use-case, aiming at revolutionizing onboard compu-
tational capabilities for space applications by leveraging RISC-
V cores and accelerators, integrated with an advanced software
layer, to create a hardware and software platform capable
of meeting the dual challenges of demanding computing and
memory requirements and the harsh environmental constraints
of space.

A key innovation of the project is to harness the CVA6
processor family [2] and tensor accelerators to enable pro-
cessing capabilities closer to the sensor and support the devel-
opment of onboard inference capabilities. This approach aims
to transform traditional workflows, where satellite data, such
as Earth observation images, undergo initial preprocessing
onboard before being transmitted to ground stations for high-
performance computing. By bringing these processing steps
onboard, the project not only minimizes uplink and downlink
requirements, but also accelerates real-time decision-making
and enhances satellite autonomy.

The space demonstrator targets a low-Earth orbit satellite
use-case, inspired by the Sentinel-2 mission [3], with an
orbiting altitude of ~786 km, and orbital period of ~6036 s.
The demonstrator encompasses a broad range of applications,
from avionic functionalities and attitude orbit control (AOC)
to telemetry processing for fault detection, identification, and
recovery (FDIR). Beyond these traditional domains, ISOLDE
focuses on artificial intelligence (AI) models to further en-
hance spacecraft autonomy. These models will be crucial
for applications such as hyperspectral data classification and



FDIR. The performance of these AI algorithms will be eval-
uated on the new hardware, showcasing their potential to
redefine the role of onboard computing in space systems.

II. A RISC-V ECOSYSTEM FOR ONBOARD AI

A. Overall Hardware Architecture

Figure 1 depicts the heterogeneous architecture adopted
for the space demonstrator. The system comprises the Linux-
capable Cheshire host platform [4] (delimited by the dashed
line), implementing a RV64GC CVA6 core [2]. The RV64GC
ISA (RV64IMAFDCZicsr_Zifencei) is selected to support a
64-bit memory space, control status register instructions, com-
pressed instructions, atomic instructions, and hard float/double
instructions, the latter necessary to enable complex operations,
such as trigonometric or exponential functions, that are not
offloaded to specialized accelerators, either because they are
rarely occurring during the computation or because the area
overhead resulting from an additional dedicated hardware
unit would not bring any significant benefit to the perfor-
mance. An AXI4 crossbar connects [5] the core with the
last-level cache, JTAG, direct memory access (DMA), and
other peripherals. The open-source platform are selected due
to their maturity, support to the Linux OS, and flexibility. The
latter is achieved with extensible on-chip (AXI4) and die-to-
die interfaces (D2D), important to support multiple domain
specific architectures, such as security coprocessors and tensor
accelerators, and to enable scalability with multiple chiplets.
The demonstrator implements tightly and loosely coupled
reconfigurable and mixed-precision accelerators on which are
offloaded compute-intensive AI workloads. In particular, two
memory mapped accelerators will implement fast and energy
efficient vector-vector, matrix-vector, and matrix-matrix op-
erations, which are the backbone of the layers composing
the neural network models described in Section III. Both
accelerators will implement a reconfigurable spatial array with
different architectures and control strategies: one accelerator
will be based on a custom architecture, whereas the other uses
multiple RISC-V (RV32) cores to process data and control the
spatial array.

In the system presented in Figure 1, the CVA6 core executes
the OS, general tasks, configures the accelerators, and control
the peripherals. The accelerators only execute compute inten-
sive workloads and have their own DMAs and control units,
to independently access the system memory and process data.

B. Software Stack

One of the objectives of the space demonstrator is to develop
a software stack that enables the automated deployment of
optimized AI applications. To achieve this, the hardware-aware
software stack of Figure 2 is under development.

Models developed with popular AI frameworks can be
compressed and optimized for the accelerator on which are
going to be offloaded. Compression is done to reduce the
computational complexity and memory footprint, to enable
the deployment to resource-constrained edge devices, such as
autonomous satellites [6]. Neural architecture search (NAS),
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Fig. 2: AI applications software stack.

quantization, and pruning are applied to achieve low-latency
and energy-efficient edge inference, leveraging the flexibility
of the hardware accelerators supporting multiple precision
levels and workload geometries, while fine-tuning is used to
retain the task accuracy of the full precision model. Hardware-
aware NAS algorithms such as the ones proposed in the open-
source framework Plinio [7] are used to fully exploit HW
acceleration capabilities, while respecting memory and latency
constraints. Once compressed, the AI model is transformed to
a representation that can be interpreted and optimized by the
compiler, which generates the binaries that are executed or
simulated on the space demonstrator. In this step, compilers
specifically targeting heterogeneous RISC-V based SoCs such
as MATCH can be used to map and optimize the execution of
AI workloads to the platform developed for the demonstrator
[8]. Extracted performance metrics can be used to further
optimize the model, adapting the compression policy.

III. AI APPLICATIONS DEVELOPED FOR THE SPACE
DEMONSTRATOR

A. Hotspot detection application

The demonstrator for the space use-case aims to assess the
feasibility of performing deep learning inference on a RISC-
V processor aboard a satellite. The first application focuses
on utilizing AI algorithms to detect wildfires from multispec-
tral satellite images collected from Sentinel-2 satellite. The



THRawS (Thermal Hotspots in Raw Sentinel-2 Data) dataset,
available as an open-source resource (THRawS) [9], contains
data on various wildfire and volcano events. This dataset
includes hyperspectral/multispectral images, where each pixel
represents the reflectance of light within specific spectral
ranges. Ground truth annotations indicate whether a pixel
corresponds to a volcano or wildfire event. Using these labels,
a neural network can be trained to identify thermal hotspots
effectively.

Before training the neural network, the raw images undergo
a preprocessing stage. Specifically, a coregistration process
aligns the different spectral bands into a single image for
training purposes. To minimize computational overhead, a
lightweight and coarse coregistration method (PyRawS) [10]
is employed. This approach reduces preprocessing costs sig-
nificantly.

Additionally, standard preprocessing steps commonly used
in ground-based applications are excluded to further re-
duce computational complexity. Notably, the application relies
solely on raw images for inference tasks, bypassing the use
of higher-level L1C images typically utilized in on-ground
operations.

1) Model Architecture: To train the network, the hyper-
spectral images are cropped into 7x7 patches and fed into the
network. Indeed, this is the size of the patch used to classify
the central pixel of each patch in "fire" or "not-fire" classes.
This cropping operation is repeated for each pixel of the image
to get the segmentation of the entire image.

One of the most used architectures for hyperspectral target
detection is the convolutional neural network. Both the 2D and
the 3D variants have been successfully employed [11]. Some
works even proposed architecture that implements both these
variants to fully exploit their features extraction capability
[12]. In this work, a 3D convolutional neural network is used.
This architecture presents three convolutional blocks. The
resulting feature maps are then flattened and passed through a
linear layer which predicts the probability of the central pixel
of the patch being a target pixel. Figure 3 depicts the scheme
of the architecture. In Figure 4 an example of inference result
is reported.

2) 3D Convolutional block: Unlike traditional 2D convolu-
tions, which operate on individual spectral bands separately,
3D convolutions can capture spectral and spatial features
jointly, providing a more comprehensive representation of the
hyperspectral data. By considering the entire spectral cube as
a 3D volume, 3D convolutional layers can learn spatial and
spectral patterns that are not easily detectable. The proposed
convolutional block comprises a 3D convolution layer with a
kernel size of 3× 3× 3 followed by another 3D convolution
layer with a kernel size of 3 × 1 × 1 and stride 2 × 1× 1 to
reduce the spectral dimension. The convolutional block used
in this architecture is shown in Figure 3. The number of filters
of the first layer is set to a number n while for the second and
third convolutional layers, this value increases by 3/4 of the
previous value.

B. Satellite Health Monitoring

The second application is of particular interest in the
domain of satellite operations. FDIR is a critical component
of satellite systems designed to ensure the reliability and
maintain operability of spacecraft throughout its expected
lifetime. FDIR processes are established methodologies aimed
at identifying malfunctions within a system, isolating the fault,
and implementing recovery actions to restore normal oper-
ations. However, traditional FDIR approaches require expert
knowledge from the specification to the disposal, representing
a significant workload throughout the engineering and service
phases. The incorporation of AI techniques in the FDIR
process represents a transformative approach to satellite health
monitoring. The approach presented in this work proposes to
improve the fault detection (FD) phase by utilizing machine
learning (ML) algorithms to analyze telemetry data onboard
the spacecraft. This approach enables the early detection of
anomalies and potential faults within satellite systems, thus
reducing response times to critical issues.

In the context of this project, the objective is to adapt an
implementation of some ML methods to the selected demon-
strator architecture, which is based on RISC-V. Deployment
on RISC-V processors represents a great opportunity as it may
enable the use of hardware acceleration for computationally
intensive operations. Traditional Space-Grade processors are
not equipped with dedicated accelerators, thus adapting AI-
based applications is challenging. Additionally, it must be
taken into account that FDIR processes are a critical and
fundamental part to maintain spacecraft functionality, thus
must reside on the main onboard computer, avoiding the
offloading to powerful but less reliable co-processor, and be
efficient.

The methods considered for this work include neural net-
work based methods, such as convolutional autoencoders and
long short-term memory (LSTM) networks. Autoencoders
are deep learning methods featuring a encoder-decoder ar-
chitecture. In this case, efficient convolutional layers are
used. LSTMs are another deep learning method belonging
to the family of recurrent neural networks, known to be
more demanding from a computational and memory point
of view with respect to convolution-based networks. For the
proposed methods, it was chosen to follow the principle of
semi-supervised learning: all the networks are trained on
nominal data (i.e., without anomalies or failures) and then
validated against data containing anomalies. In particular, the
networks are trained on multivariate time-series from units of a
spacecraft subsystem. Considering that data-driven approaches
suffers from unbalanced data and requires a large amount of
data samples, the anomalies are usually simulated, especially
in the initial stage of model exploration and fine-tuning. The
data requires a preprocessing step that shall be taken into
consideration, as it must be performed onboard the space-
craft. Relevant preprocessing steps include data conversion
(e.g., from analog sensors to digital human-readable values),
polishing, windowing (i.e., collection of more samples through

https://zenodo.org/records/7908728
https://github.com/ESA-PhiLab/PyRawS


Fig. 3: The architecture of the proposed model. On the top right the 3D convolutional block is depicted.

Fig. 4: A test image for the hotspot application. On the left
a multispectral image representation. The blue area represents
the spreading of a wildfire. On the right, the segmentation
result of the model that correctly detect the wildfire area.

time to build a time series of N points) and normalization (e.g.,
between 0 and 1).

IV. CONCLUSION

This work presented the ongoing development of the space
demonstrator under development for the ISOLDE project, with
a particular focus on the AI applications for wildfire detection
and satellite health monitoring. The execution of these AI
workloads onboard enables autonomous satellite operations,
but comes at the cost of high computational complexity, energy
consumption, and processing latency. To enable edge inference
on a resource constrained environment, a joint hardware and
software design approach must be taken. The goal of the space
demonstrator is to showcase the potential of this codesign ap-
proach applied to an all-European open hardware and software
platform.
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