

The RERI-Lite error logging framework

Michiel Koenderink, Bruno Endres Forlin, Gerard Rauwerda, Marco Ottavi CAES Group – University of Twente, the Netherlands

Introduction

RISC-V cores that are employed in space environments have a higher risk of hardware errors.

Detecting and resolving errors as fast as possible can prevent **errors** from **propagating through the system** and causing new errors.

Error logging framework

The RERI specification does not define a framework around the RERI error bank, so a new **error logging framework** was made for the RERI-Lite error record bank.

External system or application

Error logging system

One general **Error Logging System (ELS)** to detect, log, analyse and resolve all error information can improve the reliability of a system.

RERI standard

The RISC-V organisation has specified **a format for a bank with error records** that can be used to store information about detected errors.

Offset	Name	Size	Description
0	<pre>vendor_n_imp_id</pre>	8	Vendor and implementation ID.
8	bank_info	8	Error bank information.
16	valid_summary	8	Summary of valid error records.
24	Reserved	32	Reserved for future standard use.
56	Custom	8	Designated for custom use.
64 + 64 * i	control_i	8	Control register of error record i.
72 + 64 * i	status_i	8	Status register of error record i.
80 + 64 * i	addr_info_i	8	Address-or-info. register of error record i.
88 + 64 * i	info_i	8	Information register of error record i.
96 + 64 * i	<pre>suppl_info_i</pre>	8	Supplemental information register of error record i.
104 + 64 * i	timestamp_i	8	Timestamp register of error record i.
112 + 64 * i	Reserved	16	Reserved for future standard use.

Implementation results

The framework design was synthesized and implemented targeting an ARTY A7-35T.

• The decrease in area usage

Logic type		Amount of RERI-Lite records					
Logic type		1	4 8 16 32			32	
Slice LUTS	Total	216	451	1929	3468	7226	
	As logic	215	447	1921	3452	7194	
	As memory	1	4	8	16	32	
Slice registers	Total	254	534	2041	2638	6769	
	As flip flop	248	528	2035	2632	6763	
	As latch	6	6	6	6	6	
Muxes	F7	0	0	50	20	122	
	F8	0	0	8	10	8	

The standard RERI record format is large and **inconvenient for embedded systems** with limited resources.

Adjusted RERI variants will be difficult to integrate with other systems like an ELS.

can **improve** the **signal speed** and **lower** the risk of new **hardware errors**.

 Error record interactions and transmissions require less clock cycles.

D 1	TATATA			DEDI	•.		
Records	RERI			RERI-Lite			
Amount	Bytes	RAMB36	Utilised	Bytes	RAMB36	Utilised	
1	64	4	8%	16	1	2%	
4	256	16	32%	64	4	8%	
8	512	32	64%	128	8	16%	
16	1024	-	-	256	16	32%	
32	2048	-	-	512	32	64%	
64	4096	-	-	1024	-	-	

Process	Subfunction	Clock cycles		
1100035	Subrunction	RERI	RERI-Lite	
Monitoring errors	Detect error signals	3 + N*	3 + N*	
Control error record	Write valid record	33.5	9.5	
Control error record	Reset record	33.5	9.5	
	Read error record	149 - 150	14 - 42	
Analyse errors	Check error records	3.5	3.5	
	One bus transaction	9	9	
	Create UART transmission	1	1	
UART communication	Transmit UART frame	8681	8681	
	Transmit full error record	607639	86806 - 190972	

Our proposal: RERI-Lite

A new, smaller and more flexible **standard** error record format **dedicated to embedded systems**.

The RERI-Lite format uses four 32-bit registers. The top register is always used, while the other three registers are optional.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conclusions

- A **smaller** and more **flexible** error record format, called "RERI-Lite" was proposed to store error information.
- It is dedicated to **embedded systems** and its focus is to be easily **compatible** with the standard RERI error record format and other systems.
- An error logging framework around the error record bank was designed and

The fields use the **standard RERI formats** to keep compatibility with the standard RERI format.

implemented to monitor, control, analyse and export error information.

Further development

- Test the RERI-Lite framework in a radiation environment.
- Implement an extended analysis in the ESL framework.
- Provide error feedback to the main system for error recovery.

UNIVERSITY OF TWENTE.