The RERI-Lite error logging framework

Michiel Koenderink®, Bruno Forlin®, Gerard Rauwerda®®, Marco Ottavi®¢
“University of Twente, The Netherlands, bTechnolution B.V, The Netherlands, “University of Rome Tor Vergata, Italy
{m.j.h.koenderink, b.endresforlin, m.ottavi} @utwente.nl, ® gerard.rauwerda@technolution.nl

Abstract—In recent years, the adoption of RISC-V cores in ad-
vanced systems has grown significantly. These cores are employed
in several areas, including environments with a higher risk of
hardware errors, such as space. Critical systems must detect and
resolve as many errors as possible to maintain reliable operation.
Error detection, logging, analysis, and resolution keep systems
operational while collecting important diagnostic information.
The RISC-V organisation proposed a specification for formatting
error information, known as RERI. However, the extensive and
large nature of this format can be impractical where time
and resources are scarce. Furthermore, no dedicated framework
around this error logging format has been specified or introduced
yet. This work builds on the initial RISC-V RERI specification by
introducing an adapted version called “RERI-Lite.” Developed
primarily for research use in radiation beam experiments, this
system addresses the needs of smaller-scale applications with high
error rates. This paper compares RERI-Lite to the standard
RERI format. It demonstrates how the lighter, more flexible
design of RERI-Lite can improve performance in resource-
constrained contexts. Finally, the philosophy behind the error
logging framework is examined, illustrating how it fits into
broader system reliability goals.

Index Terms—RISC-V, RERI, RERI-Lite, Error logging

I. INTRODUCTION

RISC-V, as an open-source Instruction Set Architecture
(ISA), has drawn increasing industry attention for diverse
application domains such as industrial automation, healthcare,
and space [1], [2]. This growing adoption highlights the
critical need to address hardware errors that jeopardize
Reliability, Availability, and Security (RAS). In radiation-
intense environments, such as those found in space, systems
become more susceptible to Single-Event Upsets (SEUs)
and other radiation-induced faults, which can disrupt normal
operations or even cause mission failure [3]. While various
mitigation strategies (e.g., error detection, redundancy)
exist, it is impossible to fully prevent hardware errors from
occurring.

To enhance RAS, a dedicated subsystem can monitor, store,
analyse, and report hardware errors. Such an Error Logging
System (ELS) enables targeted error handling and corrective
action. This capability is also beneficial in radiation testing
environments, where multiple errors may accumulate and
affect a device’s functionality [4]. The RISC-V foundation
has proposed a hardware error logging format called the RAS
error record register interface (RERI) [5]. This specification
describes a system that augments RAS features in the SoC
with a standard mechanism for reporting errors by means
of a memory-mapped register interface to enable error

reporting [6]. Although the specification is comprehensive
and flexible enough to also be included in embedded systems,
many fields of the standard format will have to be left partially
unused or unimplemented. This could lead to many different
implementations of RERI records in embedded systems,
making their compatibility with other applications difficult.
For example, if a system wants to integrate components
from different manufacturers that made changes to the RERI
format, it will have to know what information is (no longer)
available. This requires custom compatibility patches to
integrate components. Using multiple RERI variants will
make the integration more complex and it is likely to lower
the efficiency of the system. The lack of a general standard
will especially decrease the performance of systems like the
ELS, which require compatibility with as many components
as possible. That is why a single simplified version, based
on the standard RERI format, that can be used by embedded
systems would be a good addition to the original specification.

Therefore, this research proposes such an alternative: the
RERI-Lite format, which, together with a general subsystem
design, aims to more efficiently log and resolve hardware
errors within RISC-V system-on-chips. RERI-Lite offers a
streamlined approach that balances resource usage and system
responsiveness. It keeps compatibility with the standard RERI
specification by integrating it into the standard RERI bank
and reusing the original RERI fields and codes. The aim
of the RERI-Lite format is to be able to use together with
the standard RERI format in a single system. Here we will
present preliminary implementation results in a real system,
considering data throughput, area and memory overheads,
as well as presenting design considerations for improved
versions.

II. BACKGROUND
A. Error taxonomy and detection

The standard taxonomy for error detection has three
different categories [7]. The first category is Silent Data
Corruption (SDC), which contains the errors that are not
detected. The second category, called Detected Uncorrectable
Error (DUE) has errors that are detected, but these errors
can not be corrected. The third one is Corrected Error (CE),
which are errors that are detected and they can be corrected
as well.



Hardware errors can occur in many different locations,
which will influence the severity of the error. A simple bit
flip in a data memory could overwrite a completely unused or
irrelevant data value, while that same bit flip in the instruction
memory could cause the system to overwrite important data,
repeat or skip instructions or even fully break down.

For systems to be able to recover from soft errors, Error
Detection and Correction (EDAC) is used. There are many
different methods and techniques to detect and correct errors.
However, these techniques focus on certain types of errors
and these techniques all have their own advantages and
disadvantages. There is not a single best way to detect and
correct every possible error type that exists. Systems require
a combination of methods to protect their system against all
possible error types. So a general system to log all errors
would need to be compatible with as many of these detection
units as possible.

B. RERI Standard

The RISC-V foundation has specified a format for a bank
with error records that can be used to store information about
errors [5]. This format is called RERI. This specification
describes an error bank that can log information about errors.
One RERI bank can store up to 63 different error records.
The first 64 bytes are used to store general information about
the error bank, such as the bank ID, the amount of records
in the bank and an overview of the valid records inside the
bank. After that, every 64 bytes will form an error record.
Each error record is made up of 8 registers of 64 bits.

The standard RERI error records are relatively large and
specified for 64-bit based systems. Systems might not always
have a lot of memory available to store error information,
so in these systems, the implementation of a standard RERI
error bank would be difficult. Besides, many fields of the
error record will often be unused by errors specific error
types. If fully implemented, not only would this waste
memory, it could also slow down any processes that use or
interact with these records. For example, reading a RERI
record will require multiple bus operations to retrieve the
error information. Specially in the process of analysing and
reporting error information on a system with high error rates,
speed will be important. The longer it takes to handle critical
errors, the more additional damage these errors can cause.

Although the standard RERI specification provides full
flexibility in which fields are implemented, if each design
selects a custom implementation with different features,
designing for RERI-enabled systems would be difficult
as each ELS would be fully custom, and each monitored
element could present a different interface. Especially for
systems such as an ELS, creating new variants that are
deviating from the original standard are problematic. Not
only does this require additional implementation work,

these modifications and specializations will most likely
decrease the performance of the systems as well. Therefore,
a smaller standard dedicated to embedded systems is required.

III. RERI-LITE

This work proposes an adjusted version called RERI-Lite
that can be seen in Figure 1. This format uses 4 32-bit
registers, making it more easily compatible with both 32-bit
and 64-bit based systems. The top register is always used and
its fields contain information about the component ID (cid),
the error code (ec), the error priority (pri) and if the record
is valid (v). The remaining fields will indicate how the other
three registers are used. The eat field specifies if the register
is used. For example, ”111” means that all the registers are
used, while ”001” means that only the timestamp register
is used. The tst, ait and rif fields can specify what type of
format is used in the other registers.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

cid ec tst | ait |rif| pri |eat |V
Additional error info RERI-
Address Lite
Timestamp register

Fig. 1: The RERI-Lite error record format.

The address and timestamp registers store information
about the address of the error and a time reference when the
error occurred. Their information format depends on the code
in the aif and tst fields in the top register. It works similar
to the air field used in the standard RERI specification [5].
The additional error info register is left as a customizable
format for any information that is available about the error.
Any custom format could be created based on a combination
of the error code, the rif field and an additional format code
that could be used inside the additional error info register
itself.

This RERI-Lite format is more compressed and flexible
than the standard RERI format. It allows error records to
only use parts of the register that will actually contain
useful information. At maximum, it uses only a fourth of the
standard RERI error record size. The use of the record can be
based both on the type of error and on the available system
information. A system that has no form of timestamp can
choose to ignore this register in general. Analysis or reporting
units can use this flexibility to ignore unused parts of the
record and to speed up their processes, resulting in better
performance. In addition, systems with limited available
resources can opt for RERI-Lite to save memory space.



IV. ERROR LOGGING FRAMEWORK

To prove the concept of RERI-Lite, a framework was
designed and built around the RERI-Lite error record bank as
well. The RERI specification does not specify any framework
around the RERI bank, so the system in Figure 2 was
designed. This framework was designed with the intention to
make it as generally applicable as possible.

External system or
application

Error logging system

Hardware
unit

rror
detection

Er
Er

RERI bank

Interrupt /
exception

f

RERI bank info

i
detection
—

Hardware
unit

ror
i
ctic

RERI-Lite info

Console

RERI error records

Analysis

Data
storage

board. The results of this implementation run are shown in
Tables I and II. Since the ELS is not processing any signals,
the implementation does not use DSP blocks.

Logic type Amount of RERI-Lite records
1 4 8 16 32
Total 216 | 451 | 1929 | 3468 | 7226
Slice LUTS As logic 215 | 447 | 1921 | 3452 | 7194
As memory | 1 4 8 16 32
Total 254 | 534 | 2041 | 2638 | 6769
Slice registers | As flip flop | 248 | 528 | 2035 | 2632 | 6763
As latch 6 6 6 6 6
Muxes F7 0 0 50 20 122
F8 0 0 8 10 8

TABLE I: A table with an overview of the slice logic usage
for the implementation of the ELS with various amounts of
RERI-Lite records. The LUTs implemented as memory are all
shift registers.

Error |
stecton | Fomal Records | RERI RERI-Lite
s RERI-Lite error records o0 Ox
m— Amount | Bytes | RAMB36 | Utilised | Bytes | RAMB36 | Utilised
* T 64 3 8% 16 T 2%
7 756 | 16 2% 64 7 8%
8 512 | 32 64% 28 | 8 6%
Fig. 2: A general overview of the ELS and the integration of | ¢ 10t - - > e o
RERI-Lite in the standard RERI format. = e - T02A —

The entire process of the implemented framework can
currently be split in four main stages: “monitoring”,
“controlling”, “analysing” and “UART communication”.
These stages can have several sub-processes and the required
time for these processes can depend on the error type and
other system variables. The different sub-processes can be
seen in Table III.

The system uses the format & write error unit for the
monitor stage to check all the error detection units inside the
main system. Once an error signal is detected, it will gather
the useful information and format it into a RERI-Lite error
record. This unit will send the record to the RERI-Lite error
bank. This error bank controls all error records. It will read
and write the data from error records and reset records if
the analysis is done with them. An analysis unit can then
check the error bank for new error records and process them.
This analysis is currently very simple and only transmits
the error data to an external console by using a Universal
Asynchronous Receiver-Transmitter (UART) communication
link. This analysis can be extended in the future to allow
for a more complicated analysis that will be able to provide
useful error feedback to the core as well. The last stage is a
UART unit. This unit can be connected to an external console
and will make sure that the error data that is provided by the
analysis will be transmitted according to the UART protocol.

V. IMPLEMENTATION RESULTS

The framework design with RERI-Lite error records was
synthesized and implemented targeting an Arty A7-35T

TABLE II: A table with the (expected) amount of used
RAMB36 blocks for the standard RERI and RERI-Lite imple-
mentations on an ARTY A7. The required RAMB36 resources
of the standard RERI implementation are estimated.

As can be seen in Table II, the RERI-Lite format scales
linearly and the format is expected to use only a fourth of the
memory required by the standard RERI format. The ARTY
A7 was able to implement 32 RERI-Lite error records, while
the standard RERI format could only implement 8§ records.
So, systems that implement the RERI-Lite format can have
a larger error buffer. An increased number of error records
allows the system to better handle detected errors peaks.
Especially in systems where a large fluctuation in the amount
of errors is expected, it will be useful to create a large error
buffer. So in systems with limited available memory, the
RERI-Lite format can be used to increase the buffer size of
the ELS, without the need of more memory.

Other advantages of reducing memory usage are the
decrease in area and power. Since ELS’ memory needs
to be protected, ECC increases both logic and memory
requirements. Also, the larger the area used, the higher the
chance that errors will occur in ELS, increasing the system’s
vulnerability.

This area usage also applies to the power usage. Regardless
of technology, the RERI-Lite format will always scale better
than the standard RERI-format. The results of the RERI-Lite
components give an indication of how well the standard RERI
format would perform. Table I shows the number of on-chip



components that are used by the ELS. The standard RERI
format will require 4 times the memory of the RERI-Lite
format. It is expected that the component and power usage
of an ELS with standard RERI records will be comparable
to 4 times as many RERI-Lite records. For example, when
implementing a system with 4 or 8 standard RERI records,
the system component and power usage would be comparable
to implementing 16 or 32 RERI-Lite records. This means that
the RERI-Lite format is likely to scale 4 times better than the
standard RERI format if the power usage scales linearly.

As mentioned in the previous section, the ELS has four
main stages. An overview of required clock cycles for the
various processes is shown in Table III. The clock cycle data
was gathered in a Vivado simulation. To be able to evaluate
the RERI-Lite format, this overview also shows the expected
amount of clock cycles that a standard RERI system would
require.

. Clock cycles
Process Subfunction RERT RERLLite
Monitoring errors Detect error signals 3 + N* 3+ N*
Control error record Write valid record 33.5 9.5
Reset record 33.5 9.5
Read error record 149 - 150 14 - 42
Analyse errors Check error records 3.5 3.5
One bus transaction 9 9
Create UART transmission 1 1
UART communication | Transmit UART frame 8681 8681
Transmit full error record 607639 | 86806 - 190972

TABLE III: A table with the (expected) amount of clock
cycles used to execute parts of the error logging operations. N
represents the number of additional errors that were detected
in the same clock cyle, since every additional error delays
the timing by one clock cycle. The UART communication
clock cycles assumes a 115200 baudrate and a 100 MHz clock
frequency.

As can be seen in the overview of Table III, the RERI-Lite
format is expected to perform much better than the standard
RERI format in processes that require interaction with the
error records. Since the error record format is only a fourth of
the standard RERI format, it requires less write, read and bus
operations to complete the important processes. Additionally,
the RERI-Lite format is more flexible, so the system can
ignore the unused parts of the error records. This can save
a lot of unnecessary read operations and bus transactions.
Reading an entire RERI record (assuming the use of a 32-bit
width bus) will require 149 - 150 clock cycles to complete.
In contrast, the RERI-Lite version will use a maximum of
42 clock cycles and the amount can even be lowered to 14
clock cycles if the error type uses only one of the registers.
Even if other frameworks can increase the efficiency of the
processes, RERI-Lite will always require less operations and
will thus be relatively faster than the standard RERI format.

The same concept applies to the UART communication
process. The standard RERI format will always have to
transmit the information of the entire record, while the

RERI-Lite format can ignore the unused parts and lower the
required amount of UART frames. The reduced error record
size is not only useful for faster error transmissions, but
its reduced size can also prevent the loss of error data. In
systems where a low baud rate is used or where an extremely
high number of errors per minute is expected, the large
standard RERI records can quickly overwhelm the UART
connection and cause important error information to be lost.
The RERI-Lite format will require a lot less UART frames
on average, so the number of RERI-Lite errors that can be
handled by the UART connection will be much higher.

VI. CONCLUSION

The main contribution of this work was to create a new
error record format to store error information. This format
is based on the RISC-V RERI architecture specification and
is called RERI-Lite. It uses fields and encodings similar to
the standard RERI format, but the key difference is that this
new error record format is much smaller and more flexible.
This allows smaller systems or applications that require fast
error processing or report speed to increase their performance.

This work also designed and implemented a framework for
the entire process of handling error information. It monitors
error detection units and upon the detection of an error, it will
format the available data about that error into the RERI-Lite
format. Next, the system will process the error data and
export it to an external console using the UART protocol.
Future versions of this system could extend this analysis to
also provide feedback to the main system. This will allow the
ELS to provide a system recovery feature as well in the future.

REFERENCES
[1] P. R. Nikiema, A. Palumbo, A. Aasma, L. Cassano,
A. Kiritikakou, A. Kulmala, J. Lukkarila, M. Ottavi, R. Psiakis,

and M. Traiola, “Towards Dependable RISC-V Cores for
Edge Computing Devices,” in 2023 IEEE 29th International
Symposium on  On-Line Testing and Robust System Design
(IOLTS), Jul. 2023, pp. 1-7, iSSN: 1942-9401. [Online]. Available:
https://ieeexplore.ieee.org/document/10224862/referencesreferences
[2] G. Furano, S. Di Mascio, A. Menicucci, and C. Monteleone, “A
European Roadmap to Leverage RISC-V in Space Applications,”
in 2022 IEEE Aerospace Conference (AERO). Big  Sky,
MT, USA: IEEE, Mar. 2022, pp. 1-7. [Online]. Available:
https://ieeexplore.ieee.org/document/9843361/
“ECSS-Q-HB-60-02A — Techniques for radiation effects mitigation
in ASICs and FPGAs handbook (1 September 2016) | European
Cooperation for Space Standardization.” [Online]. Available:
https://ecss.nl/hbstms/ecss-q-hb-60-02a-techniques-for-radiation-effects-
mitigation-in-asics-and-fpgas-handbook- 1-september-2016-published/
[4] H. Quinn, “Challenges in Testing Complex Systems,” IEEE Transactions
on Nuclear Science, vol. 61, no. 2, pp. 766786, Apr. 2014, conference
Name: IEEE Transactions on Nuclear Science. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/6786369
“RISC-V RERI Architecture Specification,” Sep. 2023.
Available: https://github.com/riscv-admin/ras-eri
“RISC-V Technical Specifications,” Jan. 2025, original-date: 2022-06-07.
[Online]. Available: https://github.com/riscv-non-isa/riscv-ras-eri
V. Sridharan, D. A. Liberty, and D. R. Kaeli, “A Taxonomy to Enable
Error Recovery and Correction in Software,” in Workshop on Quality-
Aware Design, 2008.

3

—_

[5

—

[Online].

[6

—

[7

—



