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ABSTRACT: A rad-hard highly parallel manycore accelerator, employing streamlined RISC-V 

cores as processing elements (PEs), is proposed for DSP and AI/ML applications in Space. Very 

small cores are required to enable integrating 1024 or more ISA-extended PEs  with very large 

on-chip memory. The architecture should support simple and easy programmability, appropriate 

ranges of operators and formats, and minimal data movements on and off chip. Three alternative 

architectures are investigated—clustered, networked, and flat shared memory manycores, as well 

as the three corresponding programming models. To enable future, yet unknown DSP and AI 

algorithms, architectural flexibility, scalability, and streamlined programming are required. 

Standard software is preferred, including simulators, programming languages, compilers, 

analyzers, frameworks, and runtime managers. Interfaces to DRAM, HBM, high speed serial links 

and die-to-die links should be considered. Radiation hardening, resilience to other Space effects, 

and strong measures of FDIR are integrated into the architecture, considering the spectrum of 

requirements from short lifetime LEO to more stringent ESA Class Alpha (previously Class 1) 

missions. Developing a European manycore accelerator for Space calls for wide collaboration. 

1. Introduction 
High performance computing in space has traditionally been driven by focus on payload data 

processing for satcom, Earth Observation, navigation and robotics using traditional DSP (Digital 

Signal Processing) algorithms such as satcom signal filtering, demodulation, switching and 

modulation, image data pre-processing and compression (both lossless and bit-rate controlled), 

navigation signal tracking, and robotics applications (e.g. autonomous landing location selection).  

Recently, AI/ML based algorithms have become in satellite on-board processing (OBP), 

implying ever growing computation and storage requirements, facilitating analytics (classification, 

detection, information extraction), data selection (for down-link optimization), predictive 

capabilities, and autonomy (decision making). In applications using AI/ML based algorithms to 

perform on-board analytics and data selection, there is often still a need to deploy classical 

algorithms for pre- and post-processing to e.g. ensure data homogeneity (i.e. due to sensor 

imperfections), or to perform compression on autonomously selected data.  

In addition, there is an increasing demand for on-board flexibility, allowing to evolve and 

change the on-board processing chain with the lifetime of the mission, or to serve multiple 

applications (or customers) using the same on-board data, e.g. during different periods of an orbit.  

Currently, on-board data processing units (DPUs) utilize multicore CPUs and FPGAs for on-

board processing tasks. Existing rad-hard multicore CPUs do not meet the requirements for most 

demanding on-board data processing applications, and FPGAs – while providing excellent 

performance – require dedicated designs for each application, and cannot easily support multiple 

different applications simultaneously or in-flight reconfiguration.  
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It is evident that powerful AI & DSP accelerators are needed since traditional rad-hard space-

ready computing systems cannot meet the present and future on-board computing demand in 

terms of both flexibility and computing performance. 

Parallel processing is essential to efficiently accelerate compute-intensive DSP & AI Space 

workloads. General purpose multicore CPUs, designed for running operating systems and a job 

mix, are power-hungry and are not scalable beyond a few tens of cores. Specialized domain-

specific architectures, such as those based on systolic arrays, can scale to thousands of 

processing elements , but their rigid and specialized interconnect and execution scheme restrict 

their usability and utilization [5] and limit their applicability to other domains. Furthermore, their 

programming model is notoriously difficult to manage [6]. Large manycore architectures such as 

GPU are more flexible than domain-specific hardwired accelerators, and at the same time are 

more scalable and more energy efficient than general-purpose processors or large DSP cores. 

This paper makes some observations and lays out considerations and open questions 

regarding plans for Space-ready AI & DSP accelerators based on manycores, rather than 

proposing a specific design or a product. The rest of the paper explains design considerations, 

explores alternative architectures, examines required software, considers interfaces and 

packages, discussed radiation hardness, and reviews previous studies in the area. 

2. Design Considerations 
Replacing a powerful single core CPU by 𝑚 tiny and simple cores that occupy the same silicon 

area conceptually enables in executing the same algorithm √𝑚 faster (‘speedup’) while 

consuming only 1/√𝑚 the power and 1/𝑚 the energy [2][10]. This observation also applies to 

common multicore processors integrating a small number of powerful cores – a 1024 or larger 

manycore (occupying the same area as a multicore, e.g., [4]) outperforms the multicore on high-

end computational challenges. 

The efficiency in manycore architectures relies on number of cores, hence increasing the core 

count by using the smallest size while maintaining a simple interconnect to orchestrate them is 

one of the key challenges. The first key to effective manycores is simple and easy 

programmability. For instance, clustered manycores such as GPUs, while offering clear 

advantages, call for extensive programming effort in order to optimize their use. Easy 

programmability also depends on a simple and clear programming model, that exposes 

algorithmic parallelism, without requiring “heroic” compilers to re-discover it from a convoluted 

sequential program.  

To be useful in a variety of applications, whether well-known ones as well as those that have 

not yet been invented, the manycore architecture should be readily programmable for a wide 

range of data intensive and parallel tasks. Clearly, basic RISC-V cores such as RV32IMF (integer, 

multiply, floating point) may fit that model (the Snitch [8] family of cores is an example). 

Domain-specific ISA extensions of a simple RISC-V core for AI & DSP accelerator manycores 

are considered. Such extensions could support, for instance, linear algebra at varying bit 

precisions and non-linear operators like softmax, useful in AI applications. 

An additional key challenge is to ensure that the selected architecture, as well as the adopted 

algorithms and their software implementation, minimize data movements, both within the 

manycore chip and to/from external memory. This is an orthogonal dimension to pure parallelism, 

but equally important, if not more, given the dominance of memory access cost in modern silicon 

technologies.  

3. Architectural Exploration 
In order to fit a large number of cores (1024 or more) into a single chip, each core had better 

be the smallest useful one, while still maintaining performance for key applications. The core is 
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studied carefully, investigating published small and efficient cores used in manycore 

architectures, and evaluating area cost of any extensions versus algorithmic gains in Space AI & 

DSP applications, simplifying the core to increase its efficiency per area. For instance, a recent 

study [4] demonstrates such integration using a single-stage ISA-extended Snitch [8]. 

While per-core acceleration is made possible by ISA extensions, it may be more efficient to 

create specific chip-level accelerators such as a matrix multiplier or a frequency-domain transform 

accelerator (Fig. 1). An IP library can be developed of domain-specific hardwired accelerators 

with easy plug-in logic to connect them (control-plane and data-plane) in the many-core fabric. 

The architects may study this trade-off in each case and for the most significant operators. 

However, such accelerators – being domain or application specific – have to be traded off in terms 

of utilized chip area, in favor of adding more cores for general purpose data processing 

applications. 

 

 
Fig. 1: Per-chip vs. per-core accelerators 

Three alternative manycore architectures bring about corresponding three different 

programming models (Fig. 2). Clustered architectures (Occamy [12], GPU) encourage divide-and-

conquer of complex algorithms into smaller units, but require complex hardware and software 

implementations to access data cross clusters. Networked manycores, similar to clustered 

architecture but using simpler interconnect, imply message-passing programming, requiring code 

for moving data around. Flat shared memory architectures seem simplest to program, with a 

model similar to that of a single core. Each core is equipped with a local cache and a scratchpad 

memory to facilitate locality and decouple execution from access to shared memory. Remote data 

accesses in flat shared memory architectures are hidden from the code and appear as cache line 

fetches and updates.  

 

 
Fig. 2: Clustered, networked, and shared memory manycore architectures 

Sizing on-chip memory vs. the number of cores in a manycore accelerator requires simulation 

studies and optimization (Fig. 3. A memory hierarchy is structured, for instance, assigning caches 

and scratchpad memories to cores, inserting second level caches, and a larger shared memory 

that is either a last-level cache (offering a window to off-chip main memory) or an on-chip main 
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memory, implying DMA-managed I/O access to off-chip memory. I/O-bound applications such as 

the autoregressive phase in LLM inference are considered in order to optimize the memory 

hierarchy, applying a roofline model. 

 

 
Fig. 3: Memory size vs. number of cores trade-off 

I/O to both data streams and large memories are structured as streams and handled by DMA 

controllers or smarter I/O processors. Data access patterns in accelerators are reasonably 

predictable and can benefit from large volume transactions at high data rates.  

An architecture study, in anticipation of designing a high end space-ready manycore 

accelerator on UDSM (ultra-deep sub-micron) technology will be preceded by intensive 

simulations, considering relevant applications as in [4] and including programming models and 

appropriate software tools, in order to drive design choices with a quantitative methodology. 

4. Software 
Minimizing the need for specific, proprietary software tools and methods is essential. ISA-

extended RISC-V cores are supported by freely available compilers and profilers, while manycore 

architectural simulators are accessible from the ETH PULP project [9] and other sources. Parallel 

languages like OpenMP (for homogeneous multicores) and OpenCL (for heterogeneous systems) 

require special, non-standardized compilers and struggle with large manycores. In contrast, 

simpler models, such as the task-oriented RC64 model [7], ease development, support 

progressive optimization, and better suit manycore accelerators. 

Beyond telecommunication applications [4][6][7], AI/ML applications are expected to be the 

most demanding application driver for manycore accelerators in space [1]. On-board data 

processing AI/ML spans analytics (e.g., ship or fire detection in EO data, cloud-screening), 

predictive analysis (e.g., fault estimation), and autonomy (e.g., preventive maintenance and 

constellation self-management). Early deep-learning models are giving way to large language 

models, transformers, and Retrieval-Augmented Generation (RAG). The space sector is likely to 

adopt AI methodologies from terrestrial applications, reducing the need for custom solutions in 

this niche market. However, AI is in tumultuous development, thus architectural flexibility, 

scalability, and streamlined programming are key requirements for future space architectures.  

Efficient software frameworks are needed to manage end-to-end data flow in both classical 

and AI-based applications, from sensor data acquisition to processing and transmission. While 

tools like TensorFlow Lite and TensorFlow Micro support AI on compatible hardware, 

comprehensive solutions remain limited. Klepsydra AI and Streaming framework addresses this 

gap by including the support for multiple hardware accelerators and optimizing AI and data 

processing orchestration [10]. 

One challenge is that for ESA Class Alpha missions rigorous software verification and 

validation is required following ECSS standards. For a rad-hard space-qualified DSP & AI 

accelerator, the full software stack, including tools and libraries used in the on-board software 

have to be designed with such standards in mind – and any required on-board software libraries 

be provided as pre-qualified software packages, to ensure adoption into such programs.  
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5. Interfaces, Packaging, Integration 
The primary I/O interfaces of a manycore accelerators employ High Speed Serial Links utilizing 

multi-gigabit SERDES, supporting both data streams (which include chip-to-chip links in multi-

accelerator scale-out applications) and external DRAM access. In terms of interconnect to 

external devices, such as host CPUs or FPGAs (for expanding interface capabilities, e.g. to 

sensors with non-standard interfaces), both standard terrestrial high-speed interface protocols 

such as PCIe and multi-gigabit Ethernet standards (as such protocols are already available in 

some space qualified up-screened COTS devices), as well as space-specific protocols (such as 

SpaceFibre, which has been adopted in the European ADHA (Advanced Data Handling 

Architecture) as the high-speed data interface over backplanes) should be considered and traded-

off, maximizing the possible board- and system-level architectures employing one or multiple DSP 

& AI manycore accelerators.  

For external memory, if HBM (High Bandwidth Memory) becomes usable in space, it should 

be supported as well by the HSSL interfaces. As a minimum, DDR4 should be supported – as 

space-qualified DDR4 devices are already available on the market. 

Chiplet support, including D2D interfaces such as UCIe, may be considered for two purposes: 

First, homogeneous integration of several manycore dies may facilitate higher yield fabrication of 

smaller dies. Second, the manycore accelerator may be integrated heterogeneously with CPU, 

FPGA, I/O and other types of chiplets for easy build-up of  specific mission solutions and platform 

derivatives. If a network-centric approach is selected for such systems, they are readily 

expandable and scalable over multiple packages. 

6. Space Worthiness and Radiation Hardness 
Radiation hardness can be judiciously embedded in the manycore. TID resilience is mostly 

inherent in UDSM processes, as long as certain structures (PLL, etc.) are treated carefully. 

Destructive latch-up (SEL) should be avoided, by proper selection of the cell library and operating 

voltage. Upsets (SEU and SEFI) are mitigated by ECCs, EDACs, monitors, and other well-known 

circuit and architecture approaches. While a large portion of the Space market requires only a 

modest level of protection, appropriate for LEO missions shorter than 10 years, the manycore 

accelerator should also be suitable for ESA Class Alpha and Beta (previously Class 1-3) missions 

(e.g. for longer LEO missions with high reliability/availability requirements, GEO or Moon/Mars 

missions)  with more stringent requirements. 

The manycore accelerator must also be resilient to environmental stress such as thermal 

cycles, board-level reliability challenges, and mechanical vibrations. There could be more than 

one type of package, serving the different market sectors. 

FDIR (Fault Detection, Isolation and Recovery), as well as more advanced methods for AI-

based self-healing, are included in the architecture. These means are inserted at multiple levels—

cells, circuits, architecture (e.g., [13]), power and clock networks, and software. 

7. Previous Studies 
ETH (Zurich) and the University of Bologna have studied various manycore architectures [3][4]. 

Ramon Space has designed and manufactured RC64 [7]. Different programming models have 

been investigated and could be considered: BareC, OpenMP, Halide domain specific language, 

and the task-oriented model developed for RC64. Klepsydra has undertaken several projects to 

validate its software development and run-time solutions for Space AI & DSP applications, 

including testing on space-qualified hardware and software, and has recently conducted an in-

orbit demonstration using AI on a GPU-based computer [10]. ESA has studied the performance 

of key on-board processing applications, both classical and AI/ML based, in multicore and parallel 

architectures in the OBPMark and GPU4S studies [14]. 
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