
Enhancing Maintainability and Reliability in Space
Applications: A RISC-V Based System Controller for High-

Performance Data Processing Units for Small Satellites
Using LiteX

Daniel Garbe
Fraunhofer Institute for High-Speed
Dynamics, Ernst-Mach-Institut, EMI

Freiburg, Germany
daniel.garbe@emi.fraunhofer.de

Clemens Horch
Fraunhofer Institute for High-Speed
Dynamics, Ernst-Mach-Institut, EMI

Freiburg, Germany
clemens.horch@emi.fraunhofer.de

Konstantin Schäfer
Fraunhofer Institute for High-Speed
Dynamics, Ernst-Mach-Institut, EMI

Freiburg, Germany
konstantin.schaefer@emi.fraunhofer.de

Abstract – The presented System Controller (SC) is based on an implementation of failure detection, isolation, and

recovery (FDIR) for a high-performance data processing unit (DPU) in small satellites. The SC monitors and isolates
affected components in case of abnormal behavior. To enhance reliability, the design shifted to a RISC-V approach
implemented on an FPGA. Built-in error correction and upset management features protect against radiation effects,
while FDIR measures focus on critical components such as GPIOs and data interfaces. With LiteX, a Python-based
SoC framework, rapid development of configurable interfaces has been achieved. The FPGA-based design improves
response times and reliability through autonomous error-handling reactions.

Keywords – System Controller, FDIR, Redundancy, COTS, FPGA, LiteX, Softcore, RISC-V

I. INTRODUCTION

The high-performance data processing unit (DPU)
by Fraunhofer EMI [1], based on a heterogeneous
MPSoC, includes redundant data storage and interfaces.
While the SRAM-based FPGA features single-event
effect (SEE) mitigation for configuration memory
(CRAM) protection, it does not cover permanent effects,
transient issues, or upsets affecting internal states. This
necessitates additional techniques like dual or triple
modular redundancy (DMR or TMR), error correction
codes (ECC), interleaving, and software redundancy,
which are discussed in this paper's motivation.

To enhance the reliability of the DPU, a distributed
FDIR approach is implemented through a synergistic
collaboration between the DPU and its System
Controllers (SC), cf. Figure 1. Each SC interacts with its
MPSoC and other SC, enabling both, a hot and a cold
redundancy. By monitoring power supply rails and
operational states, the SC can react autonomously or
software-controlled to error syndromes with user-
defined actions. Syndromes and actions are in-space
configurable, ranging from isolation and recovery of
certain components or subsystem by power cycling, up
to swapping operations to the redundant DPU instance.
This integration ensures a more robust response to faults
and enhances overall system reliability, provided
interfaces for configuration, measurements and control
signals are fault tolerant. To achieve this, FDIR of the
SoC and CPU focusses on GPIOs and data interfaces.

In small satellites commercial-off-the-shelf (COTS)
products are commonly found. A previous SC design of
the DPU used a low-power microcontroller unit (MCU)

with COTS interfaces and therefore lacked the required
flexibility, maintainability and most important
immediate and guaranteed reaction to faults. A shift to a
low-power Certus-NX FPGA with SEE-protected
CRAM and a soft MCU aligns better with the DPU's
demands, allowing for self-monitoring extensions and
improved reliability.

Figure 1 SC SoC design

RISC-V, as an open instruction set architecture
(ISA), enabled the creation of customizable and scalable
softcore ecosystems, such as VexRiscV (SpinalHDL),
making it a favorable option for DMR/TMR designs and
space applications [2]. The Python-based hardware-
description (HDL) framework LiteX [3] supports various
RISC-V implementations, including VexRiscV with
support for the real-time operating system Zephyr, and

facilitates simplified migration across platforms. Despite
these advantages, implementing modular redundancy
and other FDIR techniques requires careful analysis and
choice of measures, motivating the FDIR concept
explored in this paper.

II. MOTIVATION AND REQUIREMENTS

Protecting the DPU and itself from permanent
damage, requires autonomous reactions with high
reliability. For commanding and housekeeping services,
interfaces pose equally high priority for configuring rail
monitors, controlling power and signal switches, monitor
readings and behavioral analysis via CAN/UART. It
becomes clear, that interfaces, reaction management and
configuration are crucial parts of SC functionality, thus
requiring FDIR and if possible, redundancy. Shifting to
a FPGA-based design parallelization in hardware of
protection tasks, interface handling and software
services, frees computational resources for more
elaborated FDIR tasks,

Existing FDIR mechanisms [4] [5] [6] face
challenges with LiteX. Although LiteX supports
symmetric multiprocessing (SMP), it is still experimental
and relies on pre-generated Verilog cores. This
necessitates post-synthesis and specialized design tools,
like Synplify [7] [8] [9]. for implementing fine- and
coarse-grained DMR/TMR approaches. Integrating these
tools or modifying pre-generated cores may require extra
maintenance due to LiteX's modular design and increase
FPGA resource demands [5]. Furthermore, interlock
hazard circuitry in many LiteX cores will require
updating the core pipeline with modifications to the pre-
generated Verilog.

LiteX’s HDL is based on modular classes and
inheritance. Two major interconnect-design patterns
within the SoC design are control and status registers
(CSR) and Wishbone. The quest for long-term
maintainability has been identified in augmenting these
concepts, without relying on hardware-specific libraries.

Encouraged by radiation reports [10] of the chosen
FPGA platform, the presented approach embraces ideas
from instruction mimicking [6], interleaving threaded
redundancy [11] and software diversity [12] playing
along with enhancing LiteX design patterns.

Existing modules are inheriting from a custom LiteX
TMR class. Applying to interfaces, state machines and
GPIO in combination with password protected CSRs
configuring these by the softcore needs to be fault
tolerant. With TMR in hardware being out of scope for
LiteX SoCs, a shift to virtualizing TMR concepts was
taken. As granularity requires each thread locks after
certain tasks by counting semaphores, which yield task
sensitive contexts. At each lock step a software majority
compares and restores erroneous thread contexts.
Whenever interfaces or GPIOs are modified, a single

majority vote thread could misbehave. Here, a triple
majority vote and triplicated CSR architecture helps to
reduce error propagation. While intermittent errors
occurring in one thread are detected, multiple execution
of the same code is prone to permanent errors. Adopted
from instruction mimicking, predefined inputs are
processed by a reference code and compared to known
results and behavior. Cross referencing with execution
on associated MPSoC and other SC cores, this yields a
distributed hybrid approach to the FDIR concept.

III. FAULT ANALYSIS

A fault and risk analysis has been conducted for
fabric, mass storage devices, peripherals and power rails
involved.

As only the fabric is powered by the core voltage of
1.0V, mass storage with 1.8V and any other peripheral
by 3.3V, power rail monitoring is greatly simplified, as
priorities, error syndromes and actions are grouped
without many different consumption and IO behaviors
interfering.

By splitting the radiation caused faults into the
commonly known SEEs, we derive design decision for
the proposed implementation. Single-event upsets (SEU)
and multi-bit upsets (MBU) effects configuration and
internal memory states. The FPGA’s FDIR can handle
single errors and detect double errors in CRAM and
memory states, when located in EBR or LRAM. This is
beneficial for registers and FIFO implementations which
are very commonly used by CSR and Wishbone
modules. External memory either needs to be ECC
protected or intrinsic radiation tolerant. In Chapter IV,
we will explore how this can be evaded to a certain
extent. Critical peripherals like power monitors, load and
signal switches need other measures, i.e. plausibility
check and supervising behavior.

Digital single-event transients (DSET) can be seen
as transmission error between memories and registers.
With faster bus clocks, transients begin to transform into
SEU propagating through combinatorial logic [13],
falsely encoded then by ECC. Therefore, replacing
typical methods as electrical, logical or temporal
masking [14] with an ECC augmented bus design can
reduce the susceptibility and analysis uncertainty, freeing
EBR resources.

Analog transients (ASET) in the scope of this paper
are considered to affect just the power monitors. These
transients can be overcome by oversampling and
employing plausibility tests against measurements in the
path of the power supply tree model. If not recoverable,
immediate or graceful mitigation decision based on
severeness can be configured to take place.

Single-event function interrupts (SEFI) on the other
hand are considered pertaining complex interface logic
and cores. As such protocol verifying transmitted

messages and software measures as discussed in Chapter
II are mandatory.

Any hard SEEs like single-event latch-ups (SEL)
can be understood as not recoverable. An increased SEU
detection rate or unrecoverable error detection by
SECDEC in CRAM implies the necessity for power
cycling. Damage to the fabric or memories by i.e. single-
event burnout (SEB) or gate rupture (SEGR) can lead to
constant triggering of the internal FDIR mechanism. In
consequence reconfiguration keeps failing and is
unrecoverable in most cases.

IV. METHODS AND IMPLEMENTATION

Equipped with the results from the fault analysis, a
conceptional FDIR architecture has been elaborated,
which is presented in this chapter.

Interleaving threaded redundancy depends on
reliable majority votes over results produced for the same
task by different threads. Counting semaphores and locks
are used to step through the thread’s machine code. In
each step the thread context is accessed by a voter,
determining source address and length for comparison.
Contexts with the overlapping memory regions are
generally not allowed, as this corrupts the independent
computation assumption.

A single voting thread is the least safe option but is
the fastest voting in software. Minimizing corruption
three voting threads which update their associated
context at each lock step, render this approach safer but
are complex and introduce higher latency, especially if
inter-processor lock steps are used. Depending on the
task errors, dead locks or uncertain delays in function
calls may cause indeterministic behavior. In this case a
timeout for lock step should be employed by the
developer.

Furthermore, a special context for inter-processor
locks is envisioned, as these require communication
before voting can be conducted. This context is used in
tasks concerning cross-check computations with other
SCs’ cores and architectures like the MPSoC. Together
with reference input and implementations, crucial parts
of the core functionalities, like branching, arithmetic
operations and memory access are supervised, indicating
abnormal modes.

From hardware design perspective, task interactions
with interfaces and GPIO are transfers between core and
CSRs or Wishbone FIFOs. CSR interconnect is used i.e.
by GPIO, UART, SPI and CAN LiteX modules.
HyperRAM and SPI Flash modules are accessed by
Wishbone FIFOs and CSR. The majority vote for CSR
interactions is hardware-accelerate, requiring triplication
of registers. As Wishbone is reserved to high throughput
interfaces, in which case triplicating FIFO stages is not
feasible.

Implementing TMR in LiteX is very similar to its
Verilog counterpart. However, using Python allows for

recursive modification and application of the TMR
pattern to submodules, except for FSM, which LiteX
inherits from an underlying HDL Python library proving
to be non-trivial. Depending on the used toolchain
synthesis constraints may be required to avoid
optimization of redundant logic to a single instance. As
LiteX supports various toolchains already, the necessary
abstraction layer to add these constraints is already
prepared.

LiteX CSR registers do not by default offer ECC but
supplies the necessary logic already. Replacing the
default implementation with a custom by default ECC
enabled one, all LiteX modules are using ECC protected
CSR register automatically. Again, LiteX maintains a
target (FPGA derivate) aware infrastructure, enabling for
overrides. By this it is possible to specify, to use for
example the ECC protected EBR of the chosen FPGA
instead.

Similarly, LiteX’s Cache class is overwritten, which
is optionally used by the Wishbone interfaces. Again,
either generated or by the FPGA’s block RAM provided
ECC protection can be employed. As SDRAM (L2-
Cache located in Wishbone interface), HyperRAM and
SPI flash implementations in LiteX rely on Wishbone
interface and therefore underlying unprotected FIFOs,
thus usefulness of caches are greatly reduced in the
current concept and system specification.

With regards to synchronous logic, clock glitches
and failures are of importance. As these can
desynchronize TMR design with internal states, re-
synchronization or reset circuitry is needed. At the time
of writing no re-synchronization concept generally
applicable in LiteX has been found and is implemented
whenever necessary manually.

Clock sources also affect how other important fail-
safe mechanisms like watchdogs (WDT) perform.
Therefore, a clock supervisor module has been
introduced consisting of TMR watchdogs for each
hardware base clock available (external 12 MHz
oscillator and internal oscillator). If any clock cycles are
missing or glitches occur, w. r. t. the other clock, an error
signal and status register flag is set. Elongated
malfunctions are detected by a maximum allowable
number of deviations per defined period referenced to the
other clock. This allows to distinguish between temporal
and permanent clock failure.

Based on the previous SC design and experiences an
autonomous power and fault supervisor module is
presented. Although, clocked by any active clock
available, error syndromes requiring immediate action
are unaffected by clock failures. Error syndromes are
fault signal vectors, comprising of external alert pins and
internal fault signals. Bounding the number of known
error syndromes to a power of two, Python libraries can
be used to construct a divide and conquer based
severeness arbitration to device which action to take

immediately or enqueue into a FIFO. Each error
syndrome register has a corresponding severeness
register and action register.

Arbitration for the priority queue: most severe
syndrome in current path wins. Action is written to action
register, controlling power rails and other control signal
GPIOs. A masking register permanently shuts down for
example damaged components.

Severeness is implemented as integer vector.
Defining lowest value has highest severeness, allows for
the convention to structure the severeness bits into group
numbered 1 to 3, staring from LSB:

1. Response Timing: 0 – Immediate 1 – Signal,
Delayed Action, 2 – Signal and Await Response
with Timeout, 3 – RFU

2. Priority lowest value has highest priority
3. Path depth: components effecting leave-node

components prioritized
Hence, fault affecting many subsequent can have highest
severeness, resembling the structure from failure mode
and effects analysis tree, subdivided by priorities.

If no syndrome requires an immediate action,
arbitration is used to fill the priority queue. This process
is clocked and may fail if no clock is present. Otherwise,
arbitration overrides any other non-immediate action, by-
passing the FIFO. Here arbitration is or’ing action bits
disabling power and signal switches.

V. CONCLUSION AND FUTURE WORK

A concept for enhanced reliability and
maintainability by using design patterns based on LiteX
has been proposed in context of the presented SC.
Reusing FDIR mechanism for self-protection of the SC,
similarities to the actual to be protected MPSoC infer and
enhancing a synergetic usage of these mechanisms,
analog to monitoring power rails of the MPSoC and SC
itself. By choosing a FPGA based RISC-V architecture
over existing radiation-hardened processors, an
independency of FDIR measures to software and
hardware faults of the processor is achieved.

Modifications to the LiteX framework has been
depicted and tested in case-studies which uncovered
open challenges arising from applying TMR FDIR
techniques to the existing framework’s module classes.

Proceeding steps include an implementation of these
remaining challenges, to fully review and analyze the
reliability of the proposed SC and FDIR design.

REFERENCES

1]
C. Horch, D. Garbe and K. Schäfer, "Redundant imaging

payload data processing system based on a heterogeneous
MPSoC," 2023 European Data Handling & Data Processing
Conference (EDHPC), pp. 1-4, 2023.

2]
R. Weigand, "RISC-V First Steps Into Space," 15th ESA

Workshop on Avionics, Data, Control and Software Systems,
2021.

3]
F. Kermarrec, S. Bourdeauducq, J.-C. Le Lann and H.

Badier, "LiteX: an open-source SoC builder and library based
on Migen Python DSL," May 2020. [Online].

4]
E. M. Aguilar, F. Benevenuti and F. L. Kastensmidt,

"Hardening a RISC-V Softcore for Embedded Aerospace
Applications in SRAM-based FPGA," 2024 37th
SBC/SBMicro/IEEE Symposium on Integrated Circuits and
Systems Design (SBCCI), pp. 1-5, 2024.

5]
N. A. Koca, C. H. Chang, A. T. Do and V. P. Nambiar,

"Exploring Error Correction Circuits on RISC-V based Systems
for Space Applications," 2024 IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1-5, 2024.

6]
A. Sreekumar, B. S. Shankar and B. N. K. Reddy,

"Integrating error correction and detection techniques in RISC-
V processor microarchitecture for enhanced reliability,"
Integration, vol. 100, p. 102282, 2025.

7]
S. Habinc, "Functional Triple Modular Redundancy

(FTMR) - VHDL Design Methodology for Redundancy in
Combinatorial and Sequential Logi," European Space Agency,
2022.

8]
"Using Synplify to Design in Microsemi Radiation-

Hardened FPGAs - Application Note AC139," May 2012.
[Online]. Available:
https://ww1.microchip.com/downloads/aemdocuments/docume
nts/fpga/ApplicationNotes/ApplicationNotes/synplifyrh_an.pdf
. [Accessed 19 March 2025].

9]
A. E. Wilson and M. Wirthlin, "Fault Injection of TMR

Open Source RISC-V Processors using Dynamic Partial
Reconfiguration on SRAM-based FPGAs," 2021 IEEE Space
Computing Conference (SCC), pp. 1-8, 2021.

10]
A. Wilson, S. Larsen, C. Wilson, C. Thurlow and M.

Wirthlin, "Neutron Radiation Testing of a TMR VexRiscv Soft
Processor on SRAM-based FPGAs," IEEE Transactions on
Nuclear Science, vol. PP, pp. 1-1, 2021.

11]
M. Barbirotta, A. Cheikh, A. Mastrandrea, F. Menichelli,

M. Ottavi and M. Olivieri, "Evaluation of Dynamic Triple
Modular Redundancy in an Interleaved-Multi-Threading RISC-
V Core," Journal of Low Power Electronics and Applications,
vol. 13, no. 1, 2022.

12]
T. Lovric, "Systematic and design diversity - Software

techniques for hardware fault detection," Dependable
Computing - EDCC-1, pp. 307--326, 1994.

13]
V. Ferlet-Cavrois, L. W. Massengill and P. Gouker,

"Single Event Transients in Digital CMOS—A Review," IEEE
Transactions on Nuclear Science, vol. 60, no. 3, pp. 1767-1790,
2013.

14]
ESCC, "ECSS-E-HB-20-40A – Engineering techniques

for radiation effects mitigation in ASICs and FPGAs
handbook," 11 October 2023. [Online]. Available:
https://ecss.nl/wp-content/uploads/2023/10/ECSS-E-HB-20-
40A(11October2023).pdf. [Accessed 25 March 2025].

15]
SpinalHDL, "GitHub SpinalHDL/VexRiscV," [Online].

Available: https://github.com/SpinalHDL/VexRiscv. [Accessed
21 March 2025].

16]
J. M. Johnson and M. J. Wirthlin, "Voter insertion

algorithms for FPGA designs using triple modular redundancy,"
FPGA '10: Proceedings of the 18th annual ACM/SIGDA
international symposium on Field programmable gate arrays,
pp. 249 - 258, 2010.

