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Abstract – The presented System Controller (SC) is based on an implementation of failure detection, isolation, and 

recovery (FDIR) for a high-performance data processing unit (DPU) in small satellites. The SC monitors and isolates 
affected components in case of abnormal behavior. To enhance reliability, the design shifted to a RISC-V approach 
implemented on an FPGA. Built-in error correction and upset management features protect against radiation effects, 
while FDIR measures focus on critical components such as GPIOs and data interfaces. With LiteX, a Python-based 
SoC framework, rapid development of configurable interfaces has been achieved. The FPGA-based design improves 
response times and reliability through autonomous error-handling reactions. 
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I. INTRODUCTION 

The high-performance data processing unit (DPU) 
by Fraunhofer EMI [1], based on a heterogeneous 
MPSoC, includes redundant data storage and interfaces. 
While the SRAM-based FPGA features single-event 
effect (SEE) mitigation for configuration memory 
(CRAM) protection, it does not cover permanent effects, 
transient issues, or upsets affecting internal states. This 
necessitates additional techniques like dual or triple 
modular redundancy (DMR or TMR), error correction 
codes (ECC), interleaving, and software redundancy, 
which are discussed in this paper's motivation. 

To enhance the reliability of the DPU, a distributed 
FDIR approach is implemented through a synergistic 
collaboration between the DPU and its System 
Controllers (SC), cf. Figure 1. Each SC interacts with its 
MPSoC and other SC, enabling both, a hot and a cold 
redundancy. By monitoring power supply rails and 
operational states, the SC can react autonomously or 
software-controlled to error syndromes with user-
defined actions. Syndromes and actions are in-space 
configurable, ranging from isolation and recovery of 
certain components or subsystem by power cycling, up 
to swapping operations to the redundant DPU instance. 
This integration ensures a more robust response to faults 
and enhances overall system reliability, provided 
interfaces for configuration, measurements and control 
signals are fault tolerant. To achieve this, FDIR of the 
SoC and CPU focusses on GPIOs and data interfaces. 

In small satellites commercial-off-the-shelf (COTS) 
products are commonly found. A previous SC design of 
the DPU used a low-power microcontroller unit (MCU) 

with COTS interfaces and therefore lacked the required 
flexibility, maintainability and most important 
immediate and guaranteed reaction to faults. A shift to a 
low-power Certus-NX FPGA with SEE-protected 
CRAM and a soft MCU aligns better with the DPU's 
demands, allowing for self-monitoring extensions and 
improved reliability.  

 
Figure 1 SC SoC design 

RISC-V, as an open instruction set architecture 
(ISA), enabled the creation of customizable and scalable 
softcore ecosystems, such as VexRiscV (SpinalHDL), 
making it a favorable option for DMR/TMR designs and 
space applications [2]. The Python-based hardware-
description (HDL) framework LiteX [3] supports various 
RISC-V implementations, including VexRiscV with 
support for the real-time operating system Zephyr, and 



facilitates simplified migration across platforms. Despite 
these advantages, implementing modular redundancy 
and other FDIR techniques requires careful analysis and 
choice of measures, motivating the FDIR concept 
explored in this paper.  

 

II. MOTIVATION AND REQUIREMENTS 

Protecting the DPU and itself from permanent 
damage, requires autonomous reactions with high 
reliability. For commanding and housekeeping services, 
interfaces pose equally high priority for configuring rail 
monitors, controlling power and signal switches, monitor 
readings and behavioral analysis via CAN/UART. It 
becomes clear, that interfaces, reaction management and 
configuration are crucial parts of SC functionality, thus 
requiring FDIR and if possible, redundancy. Shifting to 
a FPGA-based design parallelization in hardware of 
protection tasks, interface handling and software 
services, frees computational resources for more 
elaborated FDIR tasks, 

Existing FDIR mechanisms [4] [5] [6] face 
challenges with LiteX. Although LiteX supports 
symmetric multiprocessing (SMP), it is still experimental 
and relies on pre-generated Verilog cores. This 
necessitates post-synthesis and specialized design tools, 
like Synplify [7] [8] [9]. for implementing fine- and 
coarse-grained DMR/TMR approaches. Integrating these 
tools or modifying pre-generated cores may require extra 
maintenance due to LiteX's modular design and increase 
FPGA resource demands [5]. Furthermore, interlock 
hazard circuitry in many LiteX cores will require 
updating the core pipeline with modifications to the pre-
generated Verilog. 

LiteX’s HDL is based on modular classes and 
inheritance. Two major interconnect-design patterns 
within the SoC design are control and status registers 
(CSR) and Wishbone. The quest for long-term 
maintainability has been identified in augmenting these 
concepts, without relying on hardware-specific libraries. 

Encouraged by radiation reports [10] of the chosen 
FPGA platform, the presented approach embraces ideas 
from instruction mimicking [6], interleaving threaded 
redundancy [11] and software diversity [12] playing 
along with enhancing LiteX design patterns. 

Existing modules are inheriting from a custom LiteX 
TMR class. Applying to interfaces, state machines and 
GPIO in combination with password protected CSRs 
configuring these by the softcore needs to be fault 
tolerant. With TMR in hardware being out of scope for 
LiteX SoCs, a shift to virtualizing TMR concepts was 
taken. As granularity requires each thread locks after 
certain tasks by counting semaphores, which yield task 
sensitive contexts. At each lock step a software majority 
compares and restores erroneous thread contexts. 
Whenever interfaces or GPIOs are modified, a single 

majority vote thread could misbehave. Here, a triple 
majority vote and triplicated CSR architecture helps to 
reduce error propagation. While intermittent errors 
occurring in one thread are detected, multiple execution 
of the same code is prone to permanent errors. Adopted 
from instruction mimicking, predefined inputs are 
processed by a reference code and compared to known 
results and behavior. Cross referencing with execution 
on associated MPSoC and other SC cores, this yields a 
distributed hybrid approach to the FDIR concept. 

III. FAULT ANALYSIS 

A fault and risk analysis has been conducted for 
fabric, mass storage devices, peripherals and power rails 
involved. 

As only the fabric is powered by the core voltage of 
1.0V, mass storage with 1.8V and any other peripheral 
by 3.3V, power rail monitoring is greatly simplified, as 
priorities, error syndromes and actions are grouped 
without many different consumption and IO behaviors 
interfering. 

By splitting the radiation caused faults into the 
commonly known SEEs, we derive design decision for 
the proposed implementation. Single-event upsets (SEU) 
and multi-bit upsets (MBU) effects configuration and 
internal memory states. The FPGA’s FDIR can handle 
single errors and detect double errors in CRAM and 
memory states, when located in EBR or LRAM. This is 
beneficial for registers and FIFO implementations which 
are very commonly used by CSR and Wishbone 
modules. External memory either needs to be ECC 
protected or intrinsic radiation tolerant. In Chapter IV, 
we will explore how this can be evaded to a certain 
extent. Critical peripherals like power monitors, load and 
signal switches need other measures, i.e. plausibility 
check and supervising behavior. 

Digital single-event transients (DSET) can be seen 
as transmission error between memories and registers. 
With faster bus clocks, transients begin to transform into 
SEU propagating through combinatorial logic [13], 
falsely encoded then by ECC. Therefore, replacing 
typical methods as electrical, logical or temporal 
masking [14] with an ECC augmented bus design can 
reduce the susceptibility and analysis uncertainty, freeing 
EBR resources.  

Analog transients (ASET) in the scope of this paper 
are considered to affect just the power monitors. These 
transients can be overcome by oversampling and 
employing plausibility tests against measurements in the 
path of the power supply tree model. If not recoverable, 
immediate or graceful mitigation decision based on 
severeness can be configured to take place. 

Single-event function interrupts (SEFI) on the other 
hand are considered pertaining complex interface logic 
and cores. As such protocol verifying transmitted 



messages and software measures as discussed in Chapter 
II are mandatory. 

Any hard SEEs like single-event latch-ups (SEL) 
can be understood as not recoverable. An increased SEU 
detection rate or unrecoverable error detection by 
SECDEC in CRAM implies the necessity for power 
cycling. Damage to the fabric or memories by i.e. single-
event burnout (SEB) or gate rupture (SEGR) can lead to 
constant triggering of the internal FDIR mechanism. In 
consequence reconfiguration keeps failing and is 
unrecoverable in most cases. 

IV. METHODS AND IMPLEMENTATION 

Equipped with the results from the fault analysis, a 
conceptional FDIR architecture has been elaborated, 
which is presented in this chapter. 

Interleaving threaded redundancy depends on 
reliable majority votes over results produced for the same 
task by different threads. Counting semaphores and locks 
are used to step through the thread’s machine code. In 
each step the thread context is accessed by a voter, 
determining source address and length for comparison. 
Contexts with the overlapping memory regions are 
generally not allowed, as this corrupts the independent 
computation assumption.  

A single voting thread is the least safe option but is 
the fastest voting in software. Minimizing corruption 
three voting threads which update their associated 
context at each lock step, render this approach safer but 
are complex and introduce higher latency, especially if 
inter-processor lock steps are used. Depending on the 
task errors, dead locks or uncertain delays in function 
calls may cause indeterministic behavior. In this case a 
timeout for lock step should be employed by the 
developer. 

Furthermore, a special context for inter-processor 
locks is envisioned, as these require communication 
before voting can be conducted. This context is used in 
tasks concerning cross-check computations with other 
SCs’ cores and architectures like the MPSoC. Together 
with reference input and implementations, crucial parts 
of the core functionalities, like branching, arithmetic 
operations and memory access are supervised, indicating 
abnormal modes. 

From hardware design perspective, task interactions 
with interfaces and GPIO are transfers between core and 
CSRs or Wishbone FIFOs. CSR interconnect is used i.e. 
by GPIO, UART, SPI and CAN LiteX modules. 
HyperRAM and SPI Flash modules are accessed by 
Wishbone FIFOs and CSR. The majority vote for CSR 
interactions is hardware-accelerate, requiring triplication 
of registers. As Wishbone is reserved to high throughput 
interfaces, in which case triplicating FIFO stages is not 
feasible. 

Implementing TMR in LiteX is very similar to its 
Verilog counterpart. However, using Python allows for 

recursive modification and application of the TMR 
pattern to submodules, except for FSM, which LiteX 
inherits from an underlying HDL Python library proving 
to be non-trivial. Depending on the used toolchain 
synthesis constraints may be required to avoid 
optimization of redundant logic to a single instance. As 
LiteX supports various toolchains already, the necessary 
abstraction layer to add these constraints is already 
prepared. 

LiteX CSR registers do not by default offer ECC but 
supplies the necessary logic already. Replacing the 
default implementation with a custom by default ECC 
enabled one, all LiteX modules are using ECC protected 
CSR register automatically. Again, LiteX maintains a 
target (FPGA derivate) aware infrastructure, enabling for 
overrides. By this it is possible to specify, to use for 
example the ECC protected EBR of the chosen FPGA 
instead. 

Similarly, LiteX’s Cache class is overwritten, which 
is optionally used by the Wishbone interfaces. Again, 
either generated or by the FPGA’s block RAM provided 
ECC protection can be employed. As SDRAM (L2-
Cache located in Wishbone interface), HyperRAM and 
SPI flash implementations in LiteX rely on Wishbone 
interface and therefore underlying unprotected FIFOs, 
thus usefulness of caches are greatly reduced in the 
current concept and system specification. 

With regards to synchronous logic, clock glitches 
and failures are of importance. As these can 
desynchronize TMR design with internal states, re-
synchronization or reset circuitry is needed. At the time 
of writing no re-synchronization concept generally 
applicable in LiteX has been found and is implemented 
whenever necessary manually. 

Clock sources also affect how other important fail-
safe mechanisms like watchdogs (WDT) perform. 
Therefore, a clock supervisor module has been 
introduced consisting of TMR watchdogs for each 
hardware base clock available (external 12 MHz 
oscillator and internal oscillator). If any clock cycles are 
missing or glitches occur, w. r. t. the other clock, an error 
signal and status register flag is set. Elongated 
malfunctions are detected by a maximum allowable 
number of deviations per defined period referenced to the 
other clock. This allows to distinguish between temporal 
and permanent clock failure. 

Based on the previous SC design and experiences an 
autonomous power and fault supervisor module is 
presented. Although, clocked by any active clock 
available, error syndromes requiring immediate action 
are unaffected by clock failures. Error syndromes are 
fault signal vectors, comprising of external alert pins and 
internal fault signals. Bounding the number of known 
error syndromes to a power of two, Python libraries can 
be used to construct a divide and conquer based 
severeness arbitration to device which action to take 



immediately or enqueue into a FIFO. Each error 
syndrome register has a corresponding severeness 
register and action register. 

Arbitration for the priority queue: most severe 
syndrome in current path wins. Action is written to action 
register, controlling power rails and other control signal 
GPIOs. A masking register permanently shuts down for 
example damaged components. 

Severeness is implemented as integer vector. 
Defining lowest value has highest severeness, allows for 
the convention to structure the severeness bits into group 
numbered 1 to 3, staring from LSB: 

1. Response Timing: 0 – Immediate 1 – Signal, 
Delayed Action, 2 – Signal and Await Response 
with Timeout, 3 – RFU 

2. Priority lowest value has highest priority 
3. Path depth: components effecting leave-node 

components prioritized 
Hence, fault affecting many subsequent can have highest 
severeness, resembling the structure from failure mode 
and effects analysis tree, subdivided by priorities.  

If no syndrome requires an immediate action, 
arbitration is used to fill the priority queue. This process 
is clocked and may fail if no clock is present. Otherwise, 
arbitration overrides any other non-immediate action, by-
passing the FIFO. Here arbitration is or’ing action bits 
disabling power and signal switches.  

V. CONCLUSION AND FUTURE WORK 

A concept for enhanced reliability and 
maintainability by using design patterns based on LiteX 
has been proposed in context of the presented SC. 
Reusing FDIR mechanism for self-protection of the SC, 
similarities to the actual to be protected MPSoC infer and 
enhancing a synergetic usage of these mechanisms, 
analog to monitoring power rails of the MPSoC and SC 
itself. By choosing a FPGA based RISC-V architecture 
over existing radiation-hardened processors, an 
independency of FDIR measures to software and 
hardware faults of the processor is achieved. 

Modifications to the LiteX framework has been 
depicted and tested in case-studies which uncovered 
open challenges arising from applying TMR FDIR 
techniques to the existing framework’s module classes. 

Proceeding steps include an implementation of these 
remaining challenges, to fully review and analyze the 
reliability of the proposed SC and FDIR design. 
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