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Abstract—The integration of Al onboard satellites is a rapidly
emerging trend to enable edge data processing, reduce depen-
dence on ground stations, and facilitate faster orbital maneuvers,
such as satellite reorientation. This evolution demands a new
class of onboard computers with enhanced processing power,
real-time control capabilities, and robustness against the harsh
conditions of the space environment. We introduce Astral, a
fully open-source heterogeneous space architecture based on the
RISC-V ISA, providing an effective, mixed-criticality template
platform for next-generation space-ready SoCs. Astral features
a dual-core, cache-coherent, Linux-capable host processor based
on the open-source CVA6 RV64 core, which can be programmed
at runtime to operate in Dual-Core Lockstep (DCLS) mode,
enabling fault detection through Double Modular Redundancy
(DMR). Additionally, the host processor integrates a dedicated
unit for system-level security, and one for AI acceleration using a
reconfigurable DMR heterogeneous RISC-V cluster with tensor
processing capabilities. The system is further protected by error-
correcting codes (ECC) in both the on-chip memory banks and
the system interconnect. Astral provides < 100 clock cycles
recovery from detected faults within the locked cores, 663 GOPS
on 3 x 3 convolution with 8-bit integer precision, 48 GOPS
on BFloatl6 General Matrix-Matrix Multiplications (GEMM),
and 10x boost of Softmax execution over software counterparts.
We present preliminary evaluation results based on synthesis in
Global Foundries GF12LP+ 12 nm FinFet technology and from
physical mapping on AMD Xilinx Ultrascale+ VCU118 evaluation
board.

I. INTRODUCTION

The integration of Artificial Intelligence (Al) into satellite
systems is a major trend in space technology, transforming
satellites into advanced Space Cyber-Physical System (S-
CPS) capable of autonomous onboard data processing. This
advancement reduces reliance on ground stations and enables
rapid decision-making for safety-critical operations such as
orbital maneuvers, as well as real-time data analysis. For
instance, ESA’s ®-Sat-2 satellite employs onboard Al for real-
time image processing [1], [2], ensuring that only essential
information is transmitted back to Earth, accelerating decision-
making processes and boosting data transmission efficiency.

Implementing Al capabilities onboard requires a new class
of satellite computers that provide enhanced processing power
while ensuring real-time operation for control function, as well
as fault tolerance and resilience against the harsh conditions
of space. Traditional satellite operations often rely on human
intervention for tasks like orbit control and system mainte-
nance. The integration of Al enhances efficiency and reduces

operational costs by enabling autonomous decision-making
and real-time data processing. Existing space processors, such
as the Cobham Gaisler GR740 [3], are typically based on
homogeneous general-purpose computing architectures with
limited support for Al acceleration. Moreover, despite being
based on open-source ISAs such as RISC-V or SPARC, all
available space processors are distributed under restrictive
licenses, offering little customization and limiting their use
for open research purposes.

This paper introduces Astral, a fully open-source', het-
erogeneous, mixed-criticality RISC-V-based space platform
designed for developing space-ready System on Chips (SoCs).
Leveraging RISC-V’s open and modular nature, Astral enables
extensive system customization and scalability, making it an
ideal platform for space applications and space processor
research and design exploration.

Astral features a dual-to-quad-core, cache-coherent, Linux-
capable host processor, complemented by a RISC-V-based
secure subsystem and an Al acceleration domain built upon 8
compact RISC-V cores with dedicated FPUs and application-
specific hardware accelerators. To enhance fault tolerance in
critical tasks, the system integrates reconfigurable Double
Modular Redundancy (DMR) [4] scheme across all processing
domains, along with Error-Correcting Codes (ECC)-protected
memory, ensuring high-performance processing under normal
conditions and system reliability when required. Astral pro-
vides < 100 clock cycles recovery from faults detected within
the locked cores, and performance increase on computationally
intensive workloads with 663 GOPS on 3 x 3 8-bit integer con-
volution, 48 GOPS on BFloat1l6 General Matrix-Matrix Mul-
tiplication (GEMM), and 10x Softmax boost over software-
based execution for modern transformer-based ML models.

The Astral architecture provides an easily scalable open-
source platform based on area and performance constraints
and comes with a ready-to-use development flow for AMD
Xilinx Ultrascale+ VCU118 FPGA boards.

II. ARCHITECTURE

Astral (Architecture for reliable execution of Safety-critical
Tasks based on RISC-V for satellite AppLications) is an open-
source architecture for on-board satellite computing. Astral
is organized in three distinct domains: host, security, and
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Fig. 1. Astral architecture, focused on the dual-core cache-coherent CVA6 host domain with DCLS support, ECC scratchpad, and the available peripherals.

accelerator — each designed to provide essential features for
emerging space applications.

A. Host domain

Figure 1 illustrates the Astral host domain architecture, de-
signed to support full-fledged operating systems and complex
software running directly onboard. The host domain relies on
the OpenHW Group CVA6. CVAG6 is a RISC-V application-
class, single-issue, in-order processor with six pipeline stages
implementing the RV64G Instruction Set Architecture (ISA)
with configurable hypervisor extension, fast interrupt virtual-
ization via dedicated Core Level Interrupt Controller (CLIC),
and TLB partitioning to boost its real-time capabilities. As-
tral’s host domain includes a dual-core CVA6 cluster with
snooping-based coherent L1 data caches compliant with the
ACE protocol [5], as well as a unified L2 data cache and an on-
chip SRAM scratchpad. To enhance the mixed-criticality and
fault tolerance capabilities of the Astral host domain, the two
CVAG cores are coupled with a runtime-programmable hybrid
modular redundancy unit [4] allowing the two cores to switch
between two operating modes: a performance mode, where
the two CVAG6 cores act as independent parallel processors
operating on different data and instructions; and a redundant
mode. In the latter, the two CVAG6 cores are grouped to execute
code in DCLS operation, exploiting a DMR scheme. To switch
to redundant mode, the two CVAG6 cores rely on a fence-based
synchronization mechanism, after which they are fed with
the same inputs (in terms of instructions, fetched data, and
interrupt lines) and cycle-by-cycle produce the same outputs
(e.g., data stored in memory) and internal state. To guarantee
result consistency, the hybrid redundancy unit provides an
online checker that continuously compares the output and
state of the two cores and, in case of mismatch, triggers a
recovery mechanism that restores the cores state within 100
clock cycles. Furthermore, the on-chip L2$ and Scratchpad
are protected with Single Error Correction, Double Error
Detection (SEC-DED) ECC encoding, with interrupt signaling
in case of multiple error occurrence.

The Astral host domain is organized around a system-
level AXIT crossbar and integrates a RISC-V-compliant Core-
Local Interrupt Controller (CLINT), a Platform-Level Inter-
rupt Controller (PLIC), an I/O Memory Management Unit
(IOMMU), a high-performance system-level Direct Memory
Access Controller (DMAC), and several memory-mapped IPs,
including Ethernet, SPI, and I2C. Additionally, it supports
external DRAM via a single-PHY HyperBus controller. The
host domain also includes a boot ROM and a debug module
accessible via the JTAG interface. To demonstrate its flexibility
as an open-source platform, the proposed Astral configura-
tion additionally incorporates Telemetry and Telecommand
(TM/TC) [6], [7] and SpaceWire [8] peripherals from Thales
Alenia Space Italy.

B. Secure domain

The secure domain, shown in Figure 2a, provides secure
boot and hardware Root-of-Trust (RoT) services for Astral.
It is based on the open-source OpenTitan project in the Earl
Grey variant, modified to integrate seamlessly into the Astral
SoC via the system AXI interconnect, accessible only through
a mailbox-based message exchange to safeguard system se-
curity [9]. The Astral secure domain includes a dual-core
lockstep Ibex RISC-V processor (RV32IMC, in-order, two-
stage pipeline) with delayed execution between the cores as
an anti-tampering countermeasure. It also features a set of
hardware accelerators for cryptographic operations, namely
AES, HMAC (SHA-256), and KMAC (SHA-3). Additionally,
it features OTBN, a coprocessor dedicated to asymmetric
encryption, essential for key exchange and digital signatures.
The secure domain can also be configured to include secure
SRAM, embedded Flash, ECC, and eFuse-based key storage,
along with a key manager for hardware identity protection.

C. Accelerator domain

The third main component of Astral is the accelerator
domain, shown in Figure 2b, designed to enhance onboard
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Fig. 2. Astral’s a) secure domain with two Ibex cores in DCLS configuration; b) accelerator domain with 8 RISCY DSP cores configurable in DCLS

mode, ECC TCDM, and three HWPEs: TPU, NPU, and SMU.

machine learning and Al performance. Based on the open-
source Parallel Ultra-Low-Power (PULP) cluster in a highly
heterogeneous configuration, it features 2—-16 RISC-V digital
signal processing cores based on the RISCY architecture
(RV32IMCFXpulpV2, in-order, four-stage pipeline) with dedi-
cated FPUs, a hierarchical instruction cache, and a DMAC for
efficient data transfer across the memory hierarchy. RISCY
cores are wrapped by a hybrid redundancy unit that can be
reconfigured at runtime to make the cores operate in DCLS
mode for reliable processing in space. In this mode, the
processors are grouped into four pairs, each exploiting DMR.
The accelerator domain includes a single L1 TCDM, organized
into 16-32 banks, each with a 32-bit data width, shared
among all the available computing entities and protected by
SEC-DED ECC encoding, supported by programmable mem-
ory scrubbers. A low-latency, high-bandwidth heterogeneous
cluster interconnect (HCI) enables the DSP cores to share
the TCDM with three domain-specific Hardware Processing
Enginess (HWPEs), which further enhance performance for
specific applications. The first of these accelerators is a highly
parametric Tensor Processing Unit (TPU), based on RedMulE,
accelerating 16-bit (FP16/BFloat16) and 8-bit (E4AM3/ESM2)
floating-point GEMM and other matrix operations (GEMM-
Ops) [10]. Then, a SoftMax Unit (SMU), based on SoftEx,
provides fast computation for softmax and GELU kernels
in 16-bit floating-point precision (FP16/BFloat16) [11]. Fi-
nally, a scalable Neural Processing Unit (NPU), based on N-
EUREKA, accelerates deep neural network layers with 2—8-bit
weights and 8-bit activations [12]. Such accelerators are highly
scalable in terms of number of istances and number of internal
computing blocks, spanning from very tiny accelerators for
energy-efficient edge processing, to large computing units for
increased performance applications. The (HCI) interconnect is
then extended with Hsiao SEC-DED ECC redundancy scheme
across all communication paths between the memory banks

and the available computing units (i.e. cores and HWPEs) to
increase the resilience to faults during memory accesses.

III. EXPERIMENTAL RESULTS
A. ASIC Implementation

We implemented the Astral architecture in synthesizable
SystemVerilog, with IPs from the PULP and OpenTitan open-
source projects. We targeted GlobalFoundries GF12LP+ 12nm
technology to evaluate the proposed architecture in terms of
area and performance, using Synopsys Design Compiler for
synthesis and Cadence Innovus for place&route. For these
evaluations, we consider a host domain with 16KiB of L1 I$
and 32KiB of L1 D$ for each CVAG6 core, plus 128KiB for the
L2 D$. The host scratchpad is 128KiB organized in 16 banks.
For the accelerator domain, we opted for an NPU configuration
with 16 Processing Elements (PEs), each with 288 1x8-bit
multipliers and 32 accumulators; a TPU with 12x4 8-to16-
bit Fused-Multiply-Add units; and a SMU with 16 lanes. The
secure domain uses the same modified Earl Grey configuration
presented in Ciani et al. [9].

As shown in Figure 3, the host domain occupies 49.5%
of the Astral architecture, while the accelerator and secure
domains account for 27.3% and 23.4%, respectively. Within
the host domain, the CVA6 cores (including caches and a
redundancy unit) occupy 29% of the area, while the L2 cache
and scratchpad memory take up 32%. The secure domain
consists mainly of on-chip memory (58%), cryptographic
accelerators (22%), and Ibex cores (6%). Other components
collectively account for 9%.

In the accelerator domain, the on-chip scratchpad takes
31%, while the HWPE subsystem occupies 41%, with con-
tributions from the NPU (27%), TPU (10%), and SMU (4%).
The RISCY cores account for 11%, while the programmable
redundant unit for 2%. Performance-wise, the NPU achieves
up to 662 GOPS for 3x3 convolutions and 196 GOPS for
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1x1 convolutions/matrix multiplications in 8-bit precision. The
TPU delivers 48 GOPS in 8/16-bit FP precision with 99.4%
MAC utilization on a 96x96 tensor. The SMU is 10x faster
than optimized software, computing Softmax with sequence
length 512 in ~ 130k cycles (~ 2 cycles per element).

Post-layout, Astral achieves timing closure for all domains
with ~ 74% density for the secure domain, ~ 62% for the
accelerator, and ~ 55% for the host.

B. FPGA Implementation

Besides the ASIC implementation, Astral provides a plug-
and-play FPGA development flow, targeting the AMD Xilinx
UltraScale+ VCU118 board. As this board is too small to
accommodate the entire Astral design, we synthesized two
separate architectural configurations: one incorporating the
host domain and the accelerator domain and the other featuring
the host domain and secure domain. Both can rely on the
DDR4 controller available on the board or on a more compact
HyperBus accessing the HyperRAM chips through an FMC
connector’. We targeted 50 MHz and 20 MHz frequency for
the host and accelerator/secure domains repsectively and show
the implementation results, in terms of resource utilization —
Look-up-Tables (LUTs), Flip-Flops (FFs), and memory tiles
(BRAM, URAM) - in Table 1.

IV. CONCLUSION

We presented preliminary implementation results for the
Astral platform, a fully open-source architecture for on-board
satellite computing.
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TABLE I

AMD XILINX ULTRASCALE+ VCU118 RESOURCE UTILIZATION TABLE

LUTs FFs BRAM URAM

Astral 1.23M 655114 366.5 20
Host Domain 389841 299395 276 4
CVA6+L1$+CLIC (x 2) 140102 63135 204 (L1$) -
Host Memory 59204 33252 64 (L2$) 4 (Scratch.)
IOMMU 6483 5583 - -
TC/TM 49277 100970 8 -
Spacewire 14088 19680 - -
Others (Peripherals etc.) 120687 76775 - -
Secure Domain 249739 146737 40 16
Ibex x2 27362 9685 7 -
Crypto Accelerators 83222 47828 13.5 -
Secure Storage 35235 16882 19.5 16
Others (Peripherals ecc.) 103920 72342 - -
Accelerator Domain 590537 208982 50.5 -
RISCY (x 8) 115400 35384 - -
DCLS Unit 33554 8305 - -
TCDM 8243 1152 40 -
HWPEs 351360 98336 - -
Others 81980 65805 10.5 (I$) -
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