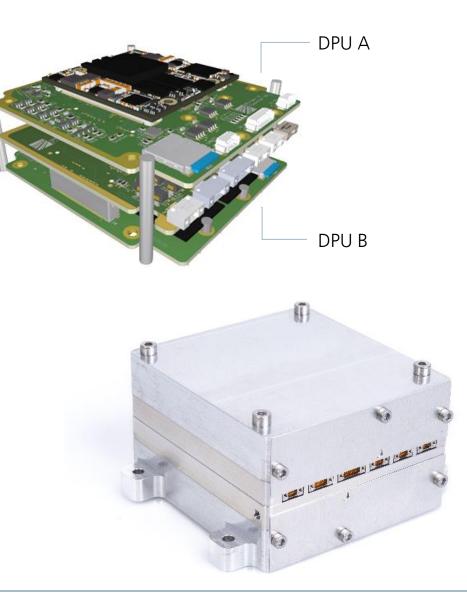


Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI

RVIS 2025

Enhancing Maintainability and Reliability in Space Applications: A RISC-V Based System Controller for High-Performance Data Processing Units for Small Satellites Using LiteX

Daniel Garbe, Clemens Horch, Konstantin Schäfer


System Controller Properties

In EMI Data Processing Unit (DPU):

- Latch-Up protection
- Power rail supervising and control
- Boot medium selection and redundancy hand-over

In general:

- Autonomous FDIR to configurable error syndromes (power, computational, interfaces)
- CSP capable
- Permanently powered on

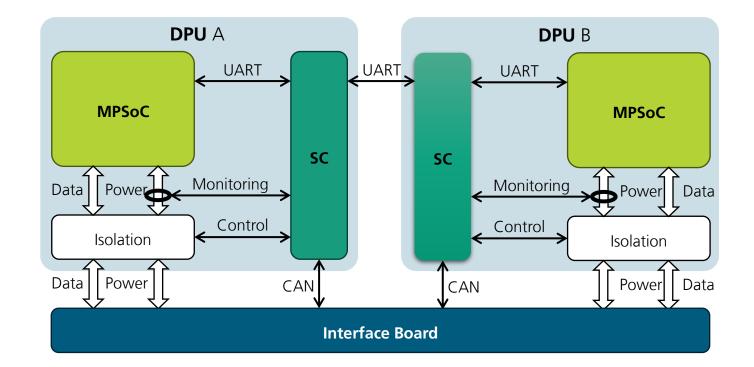
Overview system architecture

MPSoC and System Controller

Latch-Up Protection

- Power Monitoring up to 12 channels
- Soft- and hard latch-up detection
- Power switches on component level

Redundancy and FDIR


- Distributed FDIR in hard- and software
- Optional automatic boot medium failover

Housekeeping

- Voltages, Currents, Power consumption
- Faults, statistics, causes etc.

Interfaces and protocols

- UART, redundant CAN
- CSP 1.6 or 2.0 (CAN/KISS)
- Interconnects: SCs and SC/MPSoC

System Controller

Why is a RISC-V softcore used?

Maintainability

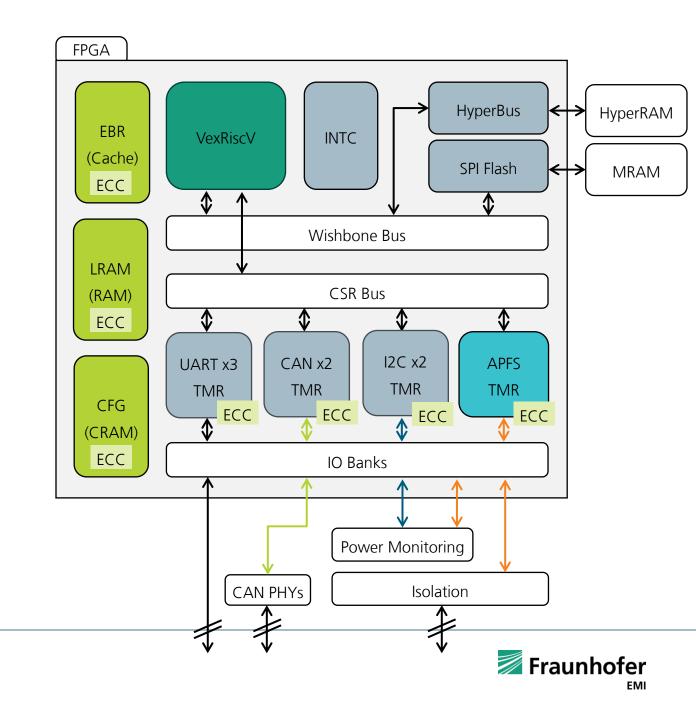
- Reusable hardware
- Modular code base

Reliability

- FDIR concept embracing fail-safe firmware updates
- RISC-V ecosystem with high-reliability (DMR/TMR)

Flexibility

- Reconfigurable interfaces and hardware with "plug-and-play" character
- Fast project related changes / shunting of damaged hardware



System Controller

Architecture of SoC and Peripherals

LiteX

- Python-based hardware description framework
- Providing standardized SoC Cores (no DMR/TMR) and Peripherals
- Highly modular and reusable software design
- Easy to adopt to FDIR concepts (to a certain degree)
- Zephyr support

Fault analysis Major insights

A/DSET

- *Clock* supervising needed
- Transient timespan may coincide with clock period
- ECC augmented *bus design*
- Oversampling in analog domain needed

SEU/MBU

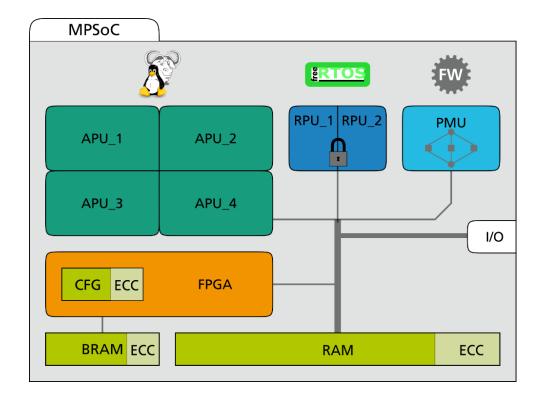
- ECC protected configuration
- Registers and FIFOs: ECC of block memories: or LiteX inferred ECC design

SEL

• Configuration: reconfiguration needed

From LiteX SoC perspective

- TMR favorable, but challenging to implement for pregenerated Verilog cores
- SEU, MBU, SEFI and SEL require distributed software approach for FDIR of cores + watchdogs


From System Controller's perspective

- High-reliability of interfaces and GPIOs
- Accessing registers and IO must be fault-tolerant

Similiarity of FDIR demands

MPSoC and SC FPGA

FDIR concepts

Applying to LiteX and Software

Triple Modular Redundancy

- Interface peripherals (LiteX modules): hardware
- LiteX cores interleaved threaded redundancy / lock steps
- Distributed instruction mimicking \rightarrow software diversity

Triplication and Majority Vote

• With exception to finite-state-machines

ECC augmented Bus Design and Registers

- CSR: DSET/SEU ✓
- Wishbone: high throughput ×

Interleaved	 Thread 0 	Perform task on context 0
	 Thread 1 	Perform task on context 1
	 Thread 2 	Perform task on context 2
Lock step	 Voter 	Majority vote, update contexts
Interleaved	 Thread 0 	Perform task on context 0
	Thread 1	Perform task on context 1
	 Thread 2 	Perform task on context 2
Lock step {	Voter 0	Majority vote, update context 0
	Voter 1	Majority vote, update context 1
	 Voter 2 	Majority vote, update context 2
Interleaved {	 Thread 0 	Access TMR register A (0)
	 Thread 1 	Access TMR register A (1)
	 Thread 2 	Access TMR register A (2)

Contact

Daniel Garbe Embedded Systems Group <u>daniel.garbe@fraunhofer.de</u>

Fraunhofer EMI Ernst-Zermelo-Str. 4 79104 Freiburg www.emi.fraunhofer.de Fraunhofer EMI Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut, EMI