

RISC-V IN SPACE WORKSHOP, 2-3 APRIL 2025, GOTHENBURG, SWEDEN

Università di Pisa

Bringing together experts, engineers, and researchers

ENGAGE-V: A RERI-Compliant RISC-V Module for RAS in Space Applications

Nicasio Canino, Daniele Rossi*, Sergio Saponara

Department of information Engineering, University of Pisa, Italy

*Contact author - daniele.rossi1@unipi.it

Outline

|--|

Background and Motivation

Overview of ENGAGE-V IP Architecture

Design Space Exploration

Analysis of Synthesis Results

Conclusions and Future Work

RISC-V IN SPACE WORKSHOP, 2-3 APRIL 2025, GOTHENBURG, SWEDEN

Reliability

Probability that the system produces correct outputs

Availability

Ability of the system to be available at any time

Serviceability

Ability of the system to provide information about the system failure occurred

Topic Discussion & Motivation

Electronics systems for Space applications are exposed to extreme conditions, leading to a variety of HW errors, such as: SEU (Single-Event Upset), SET (Single-Event Transient), SEL (Single-Event Latch-up)

Resilient & Fault-tolerant computing systems can be obtained via:

- Redundancy in HW:
 - Spatial Redundancy (DMR, TMR, ...)
 - Information Redundancy (ECC, ...)

Topic Discussion & Motivation

Electronics systems for Space applications are exposed to extreme conditions, leading to a variety of HW errors, such as: SEU (Single-Event Upset), SET (Single-Event Transient), SEL (Single-Event Latch-up)

Resilient & Fault-tolerant computing systems can be obtained via:

- Redundancy in HW:
 - Spatial Redundancy (DMR, TMR, ...)
 - Information Redundancy (ECC, ...)
- Error Logging & Reporting can further improve RAS

RISC-V IN SPACE WORKSHOP, 2-3 APRIL 2025, GOTHENBURG, SWEDEN

Triggering system SW

only when needed

Storing relevant errorrelated information

RAS Error Record Register Interface (RERI) .

RERI augments RAS capabilities via standard error logging and reporting mechanisms for all RISC-V-based CPU and SoC designs:

- Error Taxonomy: classes and severity of detected HW errors
- Standard Logging Interface: ad-hoc memory-mapped register format
- Standard Reporting Interface: configurable error signaling

Logging and reporting features are extremely customizable and extensible No requirements on HW implementation

7

RISC-V IN SPACE WORKSHOP, 2-3 APRIL 2025, GOTHENBURG, SWEDEN

RERI: Error Register Specification

RERI specification defines the **error logging** facilities to store all the information related to the detected HW error, comprising:

- Error Record: set of 64-bit registers accessible through memory-mapped accesses
 - 64-byte addressing space for each error record
 - Error logging and reporting features extremely configurable

Error Bank:

- 64-byte Header containing all the relevant info on the bank
- An array of N ≤ 63 error records, with info on the error (error_msg, ...), the address of the erroneous location, # of CEs, etc.

Offset	Name	Size	Description
0	vendor_n_imp_id	8	Vendor and implementation ID.
8	bank_info	8	Error bank information.
16	valid_summary	8	Summary of valid error records.
24	Reserved	32	Reserved for future standard use.
56	Custom	8	Designated for custom use.
64 + 64*n	control_i	8	Control register of error record i.
72 + 64*n	status_i	8	Status register of error record i.
80 + 64*n	addr_i	8	Address register of error record i.
88 + 64*n	info_i	8	Information register of error record i.
96 + 64*n	suppl_info_i	8	Supplemental information register of error record i.
104 + 64*n	timestamp_i	8	Timestamp register of error record i.
l I 2 + 64*n	Reserved	16	Reserved for future standard use.

ENGAGE-V: a RERI-compliant IP

Pre-Process Stage

- Error Mux receives the error control signals generated by the ECC circuitry of the monitored HW-units
 - Error Synch. Interface synchronizes the error message with the address of the erroneous location coming from the Address Buffer
 - Internal circular FIFO buffer is the interface to the next stage

Error Log & Report Stage

Logging Controller retrieves the synchronized error info and determines in which error record:

- Log the new error info in an error record in the Error Record Bank
- Overwrite a stored error or Discard a new error

IRQ Generator

implements the Error Reporting feature via interrupt signals

Design Space Exploration: # of ENGAGE-V Instances

For the targeted system, for a given number of HW-units to be monitored:

- The number of instances of ENGAGE-V IP (N_{IP}), and how many HW-units to monitor (N_{HW-UNIT}) with each IP, can be selected.
- Each IP instance has three parameters:
 - N_{ER} to determine the number of error records within that bank,
 - Configuration of error records of that bank, and
 - N_{FIFO} for the depth of the FIFO buffer in the pre-processing stage

RISC-V IN SPACE WORKSHOP, 2-3 APRIL 2025, GOTHENBURG, SWEDEN

DANIELE ROSSI, UNIVERSITY OF PISA ¹³

Embedded

Application

HPC/Cloud

According to RERI specification:

- All error records in a bank have same log-report configuration
- Not all registers must physically implement 64-bit registers

Number of 1-bit registers (**REG_{TOT}**) for a bank depends on the log-report configuration.

- Each error record requires 18 to 325
 1-bit registers
- Different implementations may be characterized by
 - very different error logging and reporting features
 - very different impact on area overhead

Area Impact of Main Design Parameters

ARTIMENTO DI

RISC-V IN SPACE WORKSHOP, 2-3 APRIL 2025, GOTHENBURG, SWEDEN

Area Impact of N_{HW-UNIT}

RISC-V IN SPACE WORKSHOP, 2-3 APRIL 2025, GOTHENBURG, SWEDEN

Area Impact of N_{ER}

RISC-V IN SPACE WORKSHOP, 2-3 APRIL 2025, GOTHENBURG, SWEDEN

DANIELE ROSSI, UNIVERSITY OF PISA

CONCLUSIONS

- RERI-compliant Error Logging & Reporting IP for RISC-V-based systems
- Design parameters of RAS IP should be constrained to the targeted space application
- Error record bank may impact area consumption of ENGAGE-V module
 - RERI flexibility helps designers tailor the ENAGAGE-V module to their requirements

FUTURE WORK

- Further optimizations of the performance of the ENGAGE-V module
- Exploration of additional fault-tolerance techniques
- Exploration of error recovery solutions (e.g., rollback, checkpointing, etc.) to handle the reported error events

RISC-V IN SPACE WORKSHOP, 2-3 APRIL 2025, GOTHENBURG, SWEDEN

Daniele Rossi

(daniele.rossi1@unipi.it)

D dare