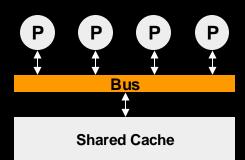
Enhancing Cache Coherent Interconnects to support Space Systems

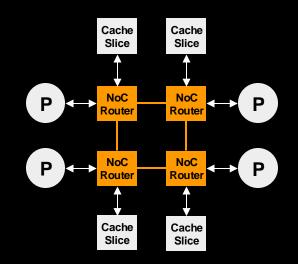
Ahsen Ejaz, Bhavishya Goel, Madhavan Manivannan, Mehrzad Nejat, Ioannis Sourdis, Per Stenström

Apr 2025, Göteborg

Rising Computational Demands in Space SoCs

- Key trends:
 - Increased onboard autonomy and AI workloads
 - Higher sensor data throughput
 - Growing application diversity
 - Increased adoption of RISC-V
- Architectural Response:
 - Multi-core & heterogeneous processing
 - Dedicated accelerators
 - Complex <u>memory hierarchies</u> and <u>interconnects</u>


System Design Complexity - Interconnect


• Bus

- Blocking: one transaction at a time
- Limited Scalability
- Simple control logic

• NoC

- Packet-switched
- Non-Blocking: multiple transactions in parallel
- Highly scalable and modular
- Higher throughput
- Complex network router architecture

System Design Complexity - Coherence

• Need for Cache Coherence

- Shared memory abstraction to simplify programming
- Essential for data consistency in parallel processing
- Enables safe, efficient data sharing among CPUs and accelerators

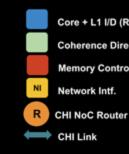
• Some industrial standards

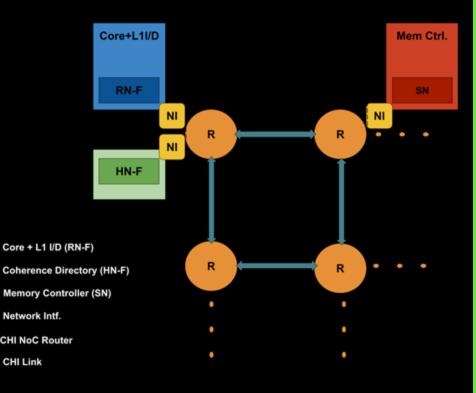
Standard	Developed By	Purpose
АМВА АСЕ	ARM	AXI coherency extension
АМВА СНІ	ARM	Scalable coherent SoCs (core-to-core, IO, clusters)
TileLink	SiFive / CHIPS Alliance	Coherent interconnect for RISC-V SoCs
CXL	Industry Consortium	Coherent CPU-to-accelerator communication over PCIe

IP Development at Chalmers

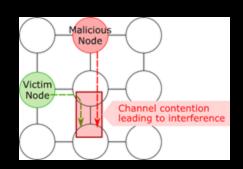
• IPs:

- AMBA CHI-Based Coherence Controller
- FastTrack NoC
- Focus on high-performance systems
- Implemented and tested in various projects (EPI, CSSTII, eProcessor, SGA2, EuPilot)

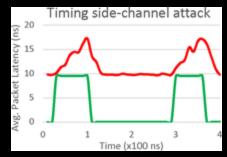




System Architecture

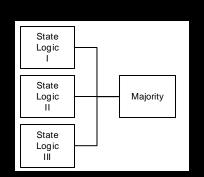

- Coherence Agents (CHI)
 - Fully-Coherent Requester Nodes (RN-F) Processor core / cluster
 - Fully-Coherent Home Node (HN-F) Shared Cache + Coherence Directory
 - Subordinate Node (SN) Memory Controller
- NoC
 - Network Interface (NI) Translates messages into packets
 - Routers (R) 0 Controls the packet flow
 - Links 0 Transfers the packets

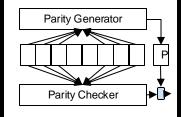




Enhancements for Space - NoC

- Lower packet latency using pipeline stage bypassing in the FastTrack NoC
- Traffic isolation → QoS support, Secure communication channels
- Fault tolerant features: error detection/correction, packet retransmission





IALMERS

Enhancements for Space - Coherence

- Redundancy for low-overhead logic
- Parity/ECC for presence bits storage
- Protocol-level upgrades to support packet retransmission

Conclusion

- Demands for larger and more complex SoCs in space is increasing
- Scalable NoC based architectures with coherence support are needed
- Security and fault-tolerant features are required for space
- Our team is working on further development of cache coherence and interconnect solutions to bring scalable SoCs into space

Thank you