FRONTGRADEGaisler

GR765 – Octa-Core Rad-Hard Microprocessor

RISC-V in Space Workshop 2025

2025-04-02

- 01 Introduction
- **02** Processor system
- **03** Integrated peripherals

- 04 Authenticated boot and security features
- **05** Conclusions

Introduction

GR765 - Introduction

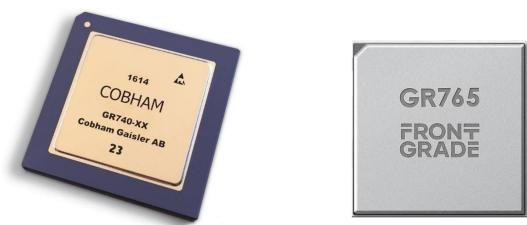
GR765 is a new processor component for space developed by Frontgrade Gaisler on STMicroelectronics 28nm technology platform.

Successor to GR740 as the high-end processor product in Frontgrade Gaisler's portfolio.

Development supported by European Space Agency ARTES, TDE, GSTP, and NAVISP EL2 programmes, SNSA contract and Frontgrade internal funding.


GR765 – Key features

ARCHITECTURE	Octa-core SPARC v8 / RISC-V RV64GCH		
QUALIFICATION	ESCC Generic Specification No. 9030		
PACKAGE	PBGA 1924 (45x45 mm, 1mm ball pitch)		
TID	50 krad(Si) (guaranteed by platform) 100 krad(Si) (testing/screening to be performed)		
SEL IMMUNITY	60 MeV*cm ² /mg @125°C		
TECHNOLOGY	STM 28nm FDSOI		
SUPPLIES	Core: 1.0 V I/O: 1.2 V 3.3 V		
FREQUENCY	800 MHz, delivering 2600 DMIPS/core		
POWER	10 W @ 25°C (TBC)		
ORIGIN	Fully developed and manufactured in Europe		



GR765 – Block diagram

GR765 – Raw numbers comparison with **GR740**

Metric	GR740	GR765	Change
CPU performance	4-core, single-issue, 250MHz	8-core, dual-issue, 800 MHz	12X
RAM capacity	SDRAM PC100, 512 MiB	DDR4-1600, 16 GiB	32X
RAM bandwidth	64 x 100Mbps = 6.4 Gbps	64 x 1600 Mbps = 100 Gbps	16X
IO bandwidth (in+out)	PCI 32x33M = 1Gbps SpW 8x2x200M = 3.2 Gbps	PCIe 8x2x4G = 64 Gbps SpFi 4x2x6.25 = 50 Gbps	27X

Processor system

NOEL-V – RISC-V Processor

- RISC-V processor core
- Superscalar in order pipeline
- RV64GCH 64-bit processor
 - 64 Base integer instructions (I)
 - MUL/DIV (M)
 - Atomics (A)
 - Half/Single/Double Precision Float (Zfhmin, FD)
 - Compressed instructions (C)
 - Hypervisor (H)
 - Bit manipulation (subset of) (B)
 - Physical Memory Protection (PMP)
 - MMU 39 bit virtual addressing, separate I and D, fully associative, TLB
- Cache control extensions
 - Cacheline invalidate, zero, etc (Zicbom, Zicbop, Zicboz)
 - Cachability in page tables (Svpbmt)
- RISC-V Advanced Interrupt Architecture (AIA)

NOQL-V RISC-V®

Performance:

- Comparable to ARM Cortex A53
- CoreMark*/MHz: 5.02**

^{*} gcc (ge0886d8ad) 15.0.1 20250330 (experimental)

⁻O3 -ffast-math -march=rv64imafdc_zba_zbb_zbc_zbs_zbkb_zbkc_zbkc_zbkx_zicond_zifencei_zfh_zicbom -mabi=lp64d finline-functions --param max-inline-insns-auto=20 --param inline-min-speedup=10 -funswitch-loops -funroll-all-loops fgcse-after-reload -fpredictive-commoning -fipa-cp-clone -falign-jumps=8 -falign-functions=8 --param=I1-cache-linesize=32 --param=I1-cache-size=16

^{**} Using "#define ee_u32 int32_t" in core_portme.h, as is common for 64 bit RISC-V.

Instruction Set Architectures

Why RISC-V?

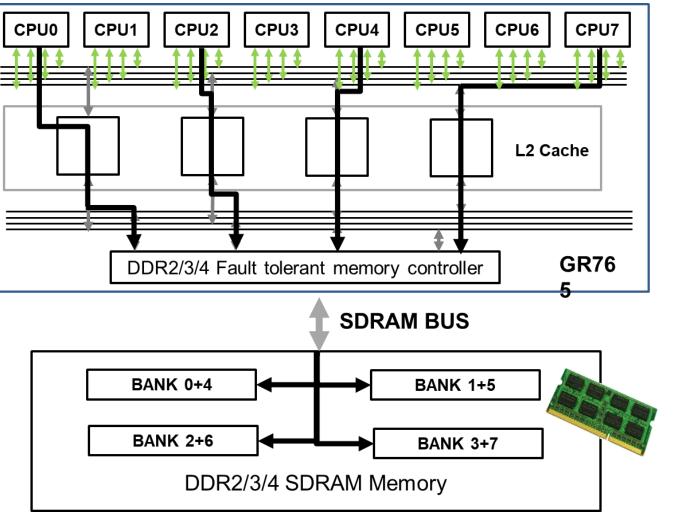
- Hardware and software potential for future space applications: A new class of processors requires a modern architecture
- Enabling new technologies by standardization
 - Hypervisor support
 - Vector extension, ...
- Growing base of 3rd party ecosystem:
 - Toolsets
 - Libraries, engines etc.
- Attractive to talent entering the space domain
- Influx of know-how by talent entering the space domain

Why SPARC?

- Existing base of space proven HW and SW designs
- Mature ecosystem for today's space applications, e.g. qualified OS
- Accumulated development knowhow in the industry
- Software backward compatible with existing LEON devices

SPARC

GR765 provides RISC-V and SPARC


- Both architectures are needed by the industry
- Faster time-to-market for RISC-V while continuing SPARC – ease transition between the two architectures
- Minimal silicon overhead sharing of resources on chip. User selects CPU (LEON5FT or NOEL-VFT), device cannot operate with both at the same time.

GR765 – Improved interconnect

- Banked / Striped on-chip bus interconnect creating four separate L2+bus hierarchies that map to different internal banks of the SDRAM.
- CPUs accessing two different stripes will have zero interference on L2 hit and near-zero on L2 miss.
- Mapping between linear RAM address (as seen from software/DMA) and stripes reconfigurable.
 Can be tuned for performance/scaling, timing isolation or hybrid of the two.
- This striping approach is fully cache-coherent and transparent to software.

Integrated peripherals

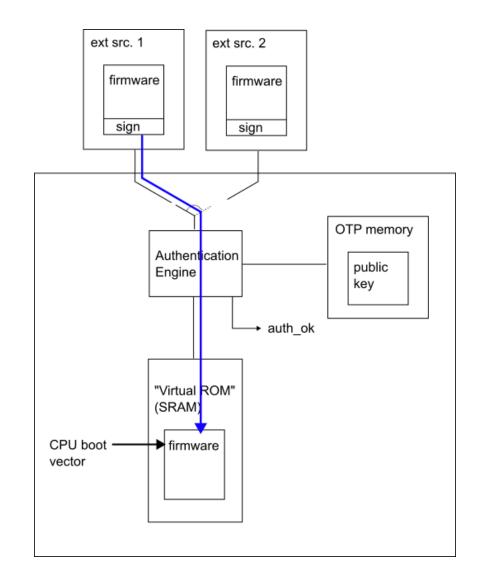
GR765 – Peripherals overview

- High speed interfaces:
 - SpaceFibre, 6.25 Gbps, 4 links
 - PCI-express gen 3 (4 Gbps),
 8 links (1x8 or 2x4 configuration)
- Industry standard interfaces:
 - SpaceWire
 - CAN / CAN-FD
 - Gigabit Ethernet (RGMII)
 - MIL-STD-1553B
 - I2C, SPI, UART

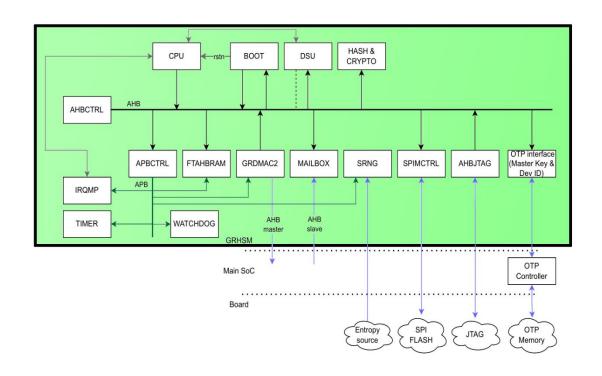
- In addition, the GR765 has many integrated functions to reduce the need for companion FPGAs:
 - NAND flash controller
 - Embedded 32kLUT FPGA
 - Time-Triggered Ethernet Switch
 - GNSS Receiver IP
 - Spacewire router with Spacewire-to-SpaceFibre bridging capability
 - External FPGA scrubber

GR765 – embedded FPGA

- GR765 will incorporate a NanoXplore eFPGA
- 32k LUTs + 40x 48kbit BRAMs
- The eFPGA subsystem will be possible to operate without processor intervention.
- **Reprogramming** of the eFPGA will **not affect processor execution**.
- The eFPGA subsystem will be **programmable** from **processors**.
- AMBA AHB and APB ports will be **accessible** to **processor subsystem**.
- Bitstream authentication will be available.
- Supported by standard NanoXplore tool set.
- Supported by **GRLIB IP** cores.



Authenticated boot and security features



GR765 – Authenticated boot scheme

- Scheme to extract first stage of software into on chip memory and verify cryptographic signature before CPU starts running
 - With retry from alternate sources
- Using hybrid classic+PQC public-key signature verification algorithm implemented in hardware with public key stored on-chip in one-time programmable memory (OTP).
- Software-free process, managed by central SoC boot manager state machine and using hardware crypto accelerator cores.

GR765 – Isolated Subsystem / Hardware Security Module

• Separate SoC with private external SPI flash storage that interfaces the rest of the system via a mailbox interface. Independent execution after device reset.

- Intended usage is as a hardware security module to perform attestation, key generation and other security/crypto-related tasks.
- Cores for SHA256 acceleration, and entropy/randomness generators for key generation.
- Working with third party provider to develop offthe-shelf software offering for the Isolated Subsystem
- Not mandatory for using the rest of the device, for applications that do not require this type of functionality.

FRONTGRA

Software support

Next-Generation SoC

Software

- Complete ecosystem \bullet
- A combination of Gaisler and 3rd party software igodol

Tool chains, **Operating systems** and compilers

- Bare-C
- Linux
- RTEMS
- VxWorks
- Zephyr

Hypervisors

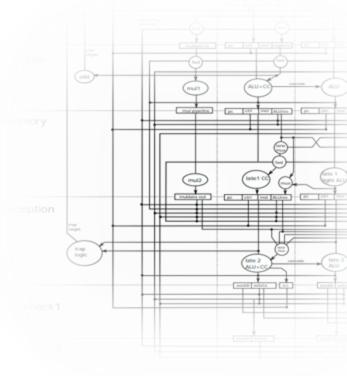
- XtratuM/XNG (FentISS)
- PikeOS (SYSGO)
- **Xvisor**

Linux

Boot loaders

- MKPROM2 •
- **GRBOOT** Flight •
 - bootloader

FRONTGRADE




Conclusions

GR765 Conclusion

- The GR765 development builds on the successful GR740 quad-core LEON4FT component, with a major leap in performance and numerous additional enhancements.
- The GR765 is an octa-core processor. Users can enable either eight NOEL-VFT RISC-V
 64-bit processor cores or eight LEON5FT cores.
- GR765 supports DDR2/3/4 SDRAM, high-speed serial link controllers and several other extensions.
- The GR765 development puts emphasis on computational performance, power efficiency, and support for mixed criticality application with a high degree of integration to allow an overall cost, space and power efficient board-level solution.
- The GR765 is supported by a strong software ecosystem.

Thank you for listening!

https://www.gaisler.com/products/gr765

