DUROC Demonstrator in Rad-Hard N7 Technology

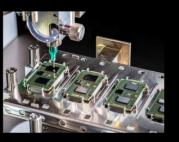
April 2nd 2025

Alp KILIC

RISC-V IN SPACE

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N°101004206

Context in 2025 and Beyond


COMPONENTS FOR SPACE CHALLENGES

SOVEREIGNTY

0

cnes

COMPETITIVENESS

FOR THE BENEFIT OF ECOSYSTEM

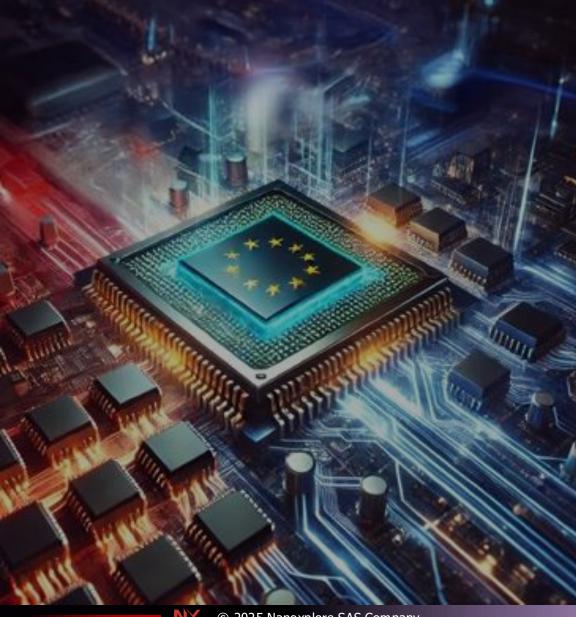
SPACE SPECIFICITIES

Source: Florence MALOU - ESCCON 2025

Courtesy of CNES (French National Space Agency)

© 2025 Nanoxplore SAS Company

RÉPUBLIQUE FRANÇAISE



Questions for all of us

Sovereignty	 Could Open Source be an answer to geopolitical instabilities? 		
Competitiveness	 How to get rid of the technical dept and move forward? 		
Ecosystem	 How can we stop reinventing the wheel? 		
Space Specificities	 Are we ready for new challenges? 		

Who Are We?

Solution French Based Company : Paris, Montpellier, Grenoble

140+ Employees with more than 90% R&D Engineers

Offer products for Hi-Rel markets

3 different products offering:

- High reliable SoC FPGA
- ASIC design services
- Silicon IPs

⊘ ITAR Free Technology

Solution Space & Defense markets

What we do?

	oprocessor Sub	system		
	Debug & Trace			
SoC Services	Pro	cessing Unit	External Memor	y Connectivity
Multichannel DMA V&T Monitor Clock & Reset Error Manager Boot SpaceWire	ARM [®] Cortex [™] -R52 ECC NEON™ MPU FPU GIC Core	ARM [®] Cortex [™] -R52 ECC NEON [™] MPU FPU GIC	DDR2/3/4 w/ RS FLASH On-chip Memor eRAM	y SPI SpaceWire JTAG UART GPIOs
FPGA Fa	abric	High Speed Connec	ctivity	General Connectivity
DSPs 19x24 Mult. Preadder 	DPRAMs True Dual Port 48 Kb 36 Kb w/EDAC 		Iex I/O to 1.8V PHY 2/3/4 PHY	GPIO • 1.8V to 3.3V

• NG-ULTRA

- Dual SoC component :
 - Quad Cortex-R52
 - 500K LUTs FPGA Fabric
- 28nm FDSOI Process
- SEE Immune
- Sovereign supply chain
- First flight models already delivered
- ... and other SoC FPGAs & FPGAs with flight heritage

Project – H2020

Design and validation of Ultra-Reprogrammable sOCs

- Specify and design the next generation of ultrareprogrammable SoC (ULTRA 7) taking benefit of lesson learnt from DAHLIA project
- Validate the SoC on a rad-hard demonstrator in 7nm FinFET technology from TSMC
- Validate reliability and radiation hardening performance of 7nm FinFET
- Introduce SiP concept for space application

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N°101004206

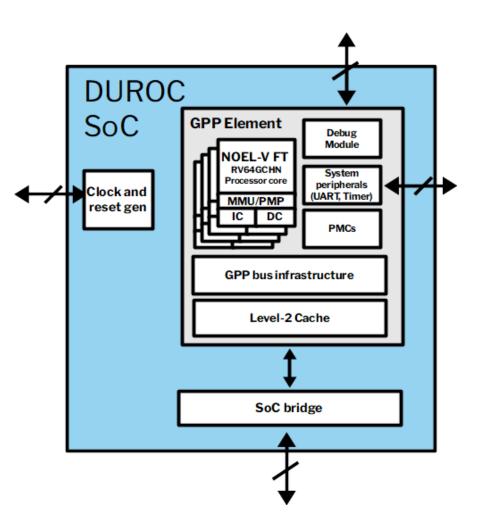
Project Partners

Design and validation of Ultra-Reprogrammable sOCs

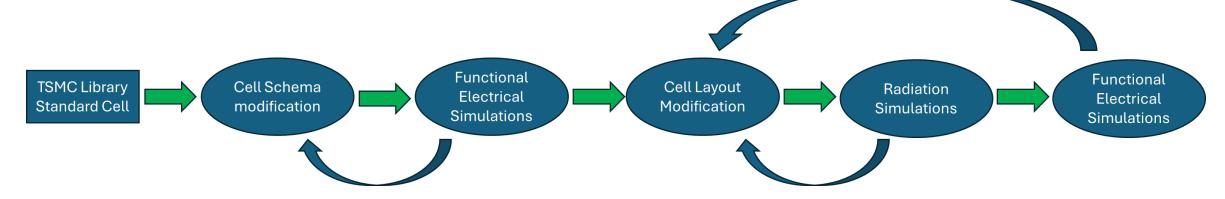
RISC-V Focus

Design and validation of Ultra-Reprogrammable sOCs

- Specify and design the next generation of ultrareprogrammable SoC (ULTRA 7) taking benefit of lesson learnt from DAHLIA project
- Validate the SoC on a rad-hard demonstrator in 7nm FinFET technology from TSMC
- Validate reliability and radiation hardening performance of 7nm FinFET
- Introduce SiP concept for space application

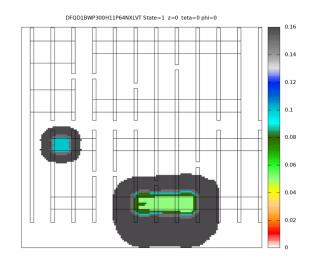

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N°101004206

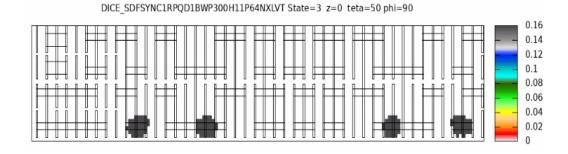
Demonstrator in N7



- Based on Frontgrade Gaisler General Purpose (GPP) element
 - Four 64-bit dual-issue NOEL-V FT RISC-V core
 - Private level-1 cache
 - Shared level-2 cache
- Radiation Constraints
 - TID test up to 150krad
 - Single Event Latchup (SEL): Target LET > 80 MeV.cm²/mg.
 - Single Event Upset (SEU) for FF : target LET > 62 MeV.cm²/mg.
 - Single Event Functional Interrupt (SEFI): target LET > 62 MeV.cm²/mg.
- Thermal Constraints
 - Operational Temperature Range: -40°C to +125°C.
- Samples in Q4 2025

Rad-Hard Standard Cell Development (1)

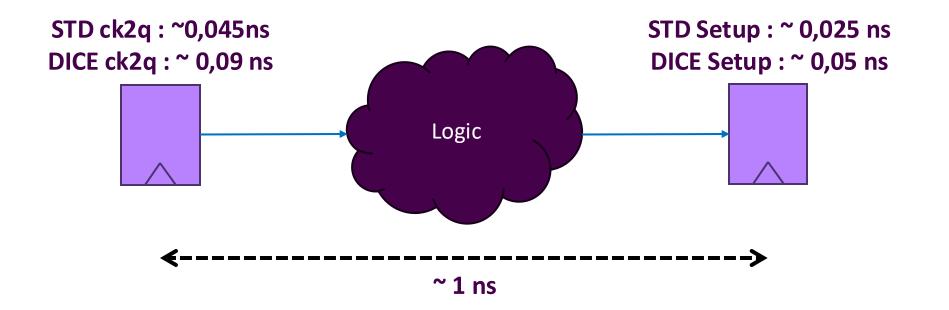

Standard Cell Radiation Hardening flow


- TSMC foundation standard cells
 - 3 different "flavors" : SLVT, LVT and SVT
 - 2 different families: High Density (HD) and High Speed (HS)
- NX's first hardening target:
 - LVT (good power vs. performance trade-off)
 - Development with both HD and HS
- Success criteria: Radiation performance as best as we can (target immunity)

Rad-Hard Standard Cell Performance (1)

- Standard and Scan DICE based D-Flop
 - 300l11p64 configuration (300nm row height / Gate length 11nm / Poly pitch 64nm)
 - Radiation performance verification with TFIT.

High-Speed TSMC D Flip-Flop

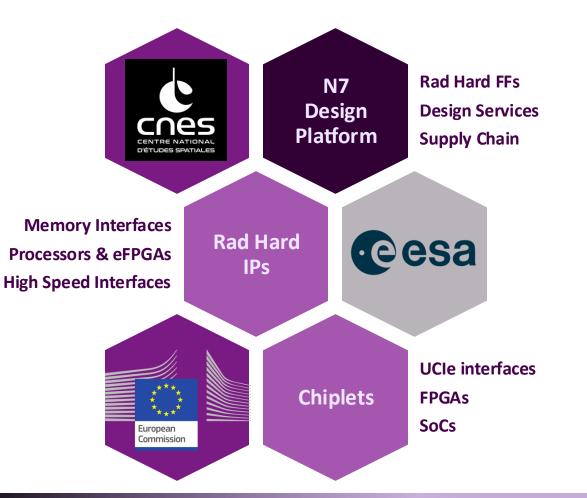


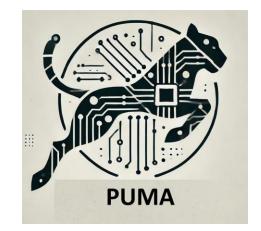
High-Speed NX DICE D Flip-Flop

• DICE DFF vs standard DFF area ratio: 3 – 4 (small silicon contribution)

Critical Path Example :

Radiation hardening overhead in a critical path: ~ 6%





For the benefit of Ecosystem: European Space-Ready N7 Design Platform

Thank You

akilic@nanoxplore.com

RISC-V IN SPACE

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N°101004206

0

