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Motivations

The RISC-V ISA has made large strides in the 
space industry recently

Singe Event Effects (SEEs) continue to be a 
significant reliability issue

▪ And continue to get worse as technology nodes scale 
down!

More work is needed to understand how best 
to harden and evaluate devices for high 
reliability situations
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D. Kobayashi, in IEEE Transactions on Nuclear Science, Feb. 2021,



Presentation Outline
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1. Introduction & Background

In digital systems transient pulses from particles can manifest into a 
Single Event Upsets (SEUs)

SET → SEU (Bit-Flip)
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1. Introduction & Background

Bit-flips in complex devices, such as microcontrollers, can result in a 
variety of device failures

▪ Corrupted Data

▪ Unintended program jumps

▪ Device halts

▪ Complete System Crashes

▪ Etc

For radiation rich environments, like space, companies provide 
suitable devices to mitigate the possibility of these errors
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TI TMS570-SEP Vorago VA41630 Microchip VA41630

• 30 kRad
• SEL > 43 Mev·cm2/mg
• 300 MHz Clock

• 200 kRad
• SEL > 110 Mev·cm2/mg
• 100 MHz Clock

• 30 kRad
• SEL > 62 Mev·cm2/mg
• 84 MHz Clock
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TI TMS570-SEP Vorago VA41630 Microchip VA41630

• 30 kRad
• SEL > 43 Mev·cm2/mg
• 300 MHz Clock

• 200 kRad
• SEL > 110 Mev·cm2/mg
• 100 MHz Clock

• 30 kRad
• SEL > 62 Mev·cm2/mg
• 84 MHz Clock

SEU performance data is limited, or not provided – how is the device hardened?

Most commercially available devices use ARM – not RISC-V!



StarRISC is radiation-tolerant 
RISC-V microcontroller device

▪ Built using Global Foundries 22-
nm FD SOI technology

Utilizes open-source designs, 
and custom-designed            
rad-hardened components

▪ Built upon the CORE-V-MCU 
Project1

4/8/2025 13

2. Device Overview

1https://docs.openhwgroup.org/projects/core-v-mcu/doc-src/overview.html



The device features a 
small and efficient 32-bit 
core from OpenHW 
Foundation2

The core is fully open-
source, with configurable 
options
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2. Device Overview

OpenHW CV32E40P Architectural Block Diagram

https://github.com/openhwgroup/cv32e40p



StarRISC is a full System-
On-Chip device

▪ 512 KB of ECC SRAM

▪ UART x2, I2C x2, QSPI x2, 
GPIO x32

▪ Internal SEU counters

▪ PWM & Timers

▪ FreeRTOS Support

▪ On-board hardened PLL

▪ Up to ~300 MHz
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2. Device Overview

StarRISC Architectural Block Diagram



StarRISC is supported by a 
development kit board

▪ Power via USB or 9V

▪ Onboard FTDI JTAG

▪ And external port

▪ Onboard flash memory

▪ ESP32 for wireless access

▪ & more!
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2. Device Overview

StarRISC Exposed Die & Development Kit Board



StarRISC is supported by a 
development kit board

▪ Power via USB or 9V

▪ Onboard FTDI JTAG

▪ And external port

▪ Onboard flash memory

▪ ESP32 for wireless access

▪ & more!

As well as an eclipse-based 
SDK
▪ GCC support
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2. Device Overview

StarRISC & Core-V-MCU SDK
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3. Hardening Techniques

StarRISC utilizes a few techniques to reduce its soft error rate (SER):
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3. Hardening Techniques

StarRISC utilizes a few techniques to reduce its soft error rate (SER):

1. 22-nm FD SOI Technology node
▪ This node is inherently resilient to SEEs

  

Smaller active 
area -> less 
collected charges

Electrical isolation 
between 
transistors
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3. Hardening Techniques

StarRISC utilizes a few techniques to reduce its soft error rate (SER):

1. 22-nm FD SOI Technology node
▪ This node is inherently resilient to SEEs
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▪ Alterations to µDMA core to auto-correct upsets on memory reads

▪ Single Bit Upset & Double Bit Upset counters
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3. Hardening Techniques

Every latch or flip-flop is replaced with our own custom-designed 
radiation-hardened storage cells
▪ All make use of the “Transistor-Stacking” technique
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3. Hardening Techniques

At the transistor layout level, we also make changes to the design to 
induce more complex charge-collections3

▪ Which reduce the amplitude of voltage transients

  FF Type Power Usage 
(n.u)

CLK-Q Delay 
(n.u)

Cell Area 
(n.u)

LET 
Threshold 

(Mev·cm2/m
g)

Standard Cell 1 1 1 ~1

Hardened 
Cell

1.4 1.4 1.6 >120

With moderate performance penalties we can obtain extremely hardened cells

FF Comparison Table

Z. Li et al., "Efficacy of Transistor Stacking on Flip-Flop SEU Performance at 22-
nm FDSOI Node," in IEEE Transactions on Nuclear Science
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4. Experimental Setups & Results

For all irradiation experiments the same test setup was used:

A test program sends out data logs to be monitored for events

Extra data about the device can be dumped through the JTAG port and 
saved via the SDK

StarRISCMonitoring PC
Programming 

PC

UART
JTAG HS2
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4. Experimental Setups & Results

The testing software 
used runs a variety of 
tests monitoring 
various functionality 
of the device

▪ Can be configured 
between looped, and 
non-looped modes

SBU and DBU counts 
are logged after each 
unit test

Test Software Flow



Alpha particle irradiation was performed at USask 

Proton experiments were conducted at TRIUMF using 150 MeV 
protons

Heavy Ion experiments were done at TAMU

▪ 1E4 particles/cm2 flux rate
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4. Experimental Setups & Results

Ion Linear Energy 
Transfer 

(MeV·cm2/mg)

Range in Si (µm)

Cu 18.4 155

Kr 30.1 149

Ag 43.5 130

Pr 64.1 135

Ions used @ TAMU

USask

TRIUMF

TAMU
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4. Experimental Results – Alpha Particle

We use an Am-241 source placed 
directly over the die

For non-looped testing, no failures or 
crashed observed
▪ 50 SBU/min w/o scrubbing

▪ 80 SBU/min w/ entire memory scrubbing

No DBU observed for non-looped 
testing

Some DBUs in unused memory if 
scrubbed after many hours of 
irradiation
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4. Experimental Results – Protons

Device was tested with 105 MeV protons up to a combined fluence of 
1E12 particles/cm2

Average SBU rate of 
7/minute – non-looped no 
scrub
▪ No DBUs

No functional failures or 
crashes for either software 
mode

No increased current draw or 
failures up to 200 kRad StarRISC undergoing proton testing @ TRIUMF
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4. Experimental Results – Heavy Ions

For non-looped testing no 
functional failures or crashes 
detected up to an LET of 96.3 
MeV·cm2/mg

▪ Tested fluence up to 1E7

Looped testing presented 
system failures at every LET 
tested

DBUs became much more 
prevalent StarRISC undergoing Heavy Ion Testing @ TAMU
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4. Experimental Results – Heavy Ions

SRAM SBU Cross-Section 
Per Bit Vs. LET

Overall Device SEFI Cross-
Section & DBU Cross-

Sections Vs. LET
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4. Experimental Results – Heavy Ions

Time Taken for Each Unit 
Test Percentage of Unit Tests 

Resulting in SEFIs
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4. Experimental Results – Heavy Ions

Percent Breakdown of Error 
Codes Seen

DEVICE 
ERROR CODE

DESCRIPTION & LIKELY CAUSE

IS_EXCEPTION GLOBAL EXCEPTION HAS BEEN RAISED. MACHINE PROGRAM COUNTER, 
OR INSTRUCTION CODE IS UNDEFINED OR NULL.

PORTASM 
FAILURE

ERROR DURING CONTEXT SWITCHING OR REGISTER SERVICE ROUTINES. 
LOADED REGISTER VALUES ARE NULL OR UNDEFINED.

TASK CONTROL 
FAILURE

PRIORITY VALUES FOR TASKS WITHIN FREERTOS ARE IN UNDEFINED OR 
NULL STATE

SEMAPHORE 
FAILURE

QUEUE POINTER IN FREERTOS IS IN A UNDEFINED OR NULL STATE.

Descriptions of Errors Seen During Testing



5. Concluding Remarks – Experiments Summary

Proton Testing:

▪ No failures for either testing mode

▪ Very few memory errors

▪ TID tolerance up to 200 kRad

Heavy Ion Testing:

▪ Failures only for looped testing at every LET

▪ DBUs occur at every LET, but the SEFI cross-section stays relatively constant

▪Most SEFIs can be related to corrupted device memory
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5. Concluding Remarks – Experiments Summary

Device SEFI rate tends to be more dependent on the testing software 
rather than particle LET
▪ Non-looped testing routinely scrubs active memory space

▪ Looped testing allows for accumulated memory upsets

This suggests that accumulated memory errors contribute to device 
failures
▪ The core and peripherals are assumed to be exceptionally hard

Understanding the failure rate of the device due to SEUs depends on 
more than LET
▪ Per bit cross-section

▪ Particle flux rate

▪ Average memory access time & scrub
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5. Concluding Remarks – Future Work

We are working on developing a probabilistic model that considers 
these factors to better predict SEFI rates
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Allows us to 
selectively irradiate 
the core and 
memory blocks



5. Concluding Remarks – Future Work
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Payload aboard the next gen USask cube satellite
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5. Concluding Remarks – Future Work

We are working on developing a probabilistic model that considers 
these factors to better predict SEFI rates

Pulsed Laser injection testing

Microbeam testing at ANSTO

Payload aboard the next gen USask cube satellite

Potential commercialization
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Thank You to our Collaborators!
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