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Motivations S
1

Reference year

. . ’78°84°90°95°99°03°07°12°18

B The RISC-V ISA has made large strides in the 10° N —r———
space industry recently 10° f

. . 10° |

m Singe Event Effects (SEEs) continue to be a 5 102
significant reliability issue ";Z; e

® And continue to get worse as technology nodes scale 10°
down! 107!

B More work is needed to understand how best 10'21(',5 o 1 1 10T 100
to harden and evaluate devices for high ¢(nm)
reliability situations —

Channel Bulk sor
Planar Bulk-Planar SOI-Planar O
Fin* Bulk-Fin 4 SOI-Fin ©
T Includes similar substrate structures such as
SOS.
* Includes similar three-dimensional channel
D. Kobayashi, in IEEE Transactions on Nuclear Science, Feb. 2021, structures such as a tri-gate.
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1. Introduction & Background

2. Device Overview
Applied Hardening Techniques
4, Experimental Setups & Results

5. Concluding Remarks

w
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1. Introduction & Background -

m In digital systems transient pulses from particles can manifest into a
Single Event Upsets (SEUs)

m SET - SEU (Bit-Flip)

4/8/2025 4



1. Introduction & Background Ve, | STARR-Lab

- Y \\. Semiconductor Technology And
1 Rad-Effects Research Lab

m In digital systems transient pulses from particles can manifest into a
Single Event Upsets (SEUs)

m SET - SEU (Bit-Flip)
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m Bit-flips in complex devices, such as microcontrollers, can result in a
variety of device failures
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m Bit-flips in complex devices, such as microcontrollers, can result in a
variety of device failures
® Corrupted Data
® Unintended program jumps

Your PC ran into a problem and needs to restart. We're
just collecting some error info, and then we'll restart for

® Device halts =y

20% complete

1w [
fyou calla

® Complete System Crashes
" Etc
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m Bit-flips in complex devices, such as microcontrollers, can result in a
variety of device failures
® Corrupted Data
® Unintended program jumps

Your PC ran into a problem and needs to restart. We're
just collecting some error info, and then we'll restart for

® Device halts =y

20% complete

EhEE For

® Complete System Crashes
" Etc

m For radiation rich environments, like space, companies provide
suitable devices to mitigate the possibility of these errors
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B Currently there a number of “rad-hardened” devices available
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B Currently there a number of “rad-hardened” devices available

TI TMS570-SEP

* 30 kRad
* SEL> 43 Mev-:cm?/mg
* 300 MHz Clock

Vorago VA41630

i

1wz ® \VVORAGO
VA41630-CQ176FK

=l 2119BA001-WO05S044

Arm°Cortex®- M4
K

it

200 kRad
SEL > 110 Mev-cm?/mg
100 MHz Clock

Microchip VA41630

* 30 kRad
* SEL> 62 Mev-:cm?/mg
e 84 MHz Clock
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B Currently there a number of “rad-hardened” devices available

TI TMS570-SEP Vorago VA41630 Microchip VA41630

)

w®VVORAGO
VA41630-CQ176FK

=l 2119BA001-W05S044
Arm°Cortex® M4

* 30 kRad e 200 kRad * 30 kRad
* SEL> 43 Mev-:cm?/mg  SEL> 110 Mev-cm?/mg * SEL> 62 Mev-:cm?/mg
* 300 MHz Clock * 100 MHz Clock e 84 MHz Clock

Most commercially available devices use ARM — not RISC-V!
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B Currently there a number of “rad-hardened” devices available

TI TMS570-SEP Vorago VA41630 Microchip VA41630

A e

1wz \VVORAGO
VA41630-CQ176FK

=l 2119BA001-W05S044
Arm°Cortex®- M4

* 30 kRad e 200 kRad * 30 kRad
* SEL> 43 Mev-:cm?/mg  SEL> 110 Mev-cm?/mg * SEL> 62 Mev-:cm?/mg
* 300 MHz Clock * 100 MHz Clock e 84 MHz Clock

Most commercially available devices use ARM — not RISC-V!

SEU performance data is limited, or not provided — how is the device hardened?
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2. Device Overview el

B StarRISC is radiation-tolerant
RISC-V microcontroller device

® Built using Global Foundries 22-
nm FD SOI technology

StarRISC

A Rad Tolerant RISC-V |
Mlcrocontroller ‘

B Utilizes open-source designs,
and custom-designed
rad-hardened components

® Built upon the CORE-V-MCU
Project?

thttps://docs.openhwgroup.org/projects/core-v-mcu/doc-src/overview.html

4/8/2025 13
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B The device features a debug nteriace et merace

small and efficient 32-bit i s o e
core from OpenHW [P }
Foundation? e — ||
huffer -
B The core is fully open- o = T,
i 1 EEE aligner ’ E R e mg
source, with configurable 220 ] Lo [ T2
options C&“&%ﬁéﬁ}i f%?i%;?r A
ovazEOPoore [ — E..
iu:; FPU HUDI
CV32E40P top o A

OpenHW CV32E40P Architectural Block Diagram

https://github.com/openhwgroup/cv32e40p
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B StarRISC is a full System- StarRISC [ wiewmmeaa Cuamamn

On-Chip device
® 512 KB of ECC SRAM

" UART x2, 12C x2, QSPI x2,
GPIO x32

" Internal SEU counters
" PWM & Timers
® FreeRTOS Support

® On-board hardened PLL
= Up to ¥300 MHz

Memory

CV32E40P
RISC-V

2xQSP| +—
2xI12C +——
SDIO +——

CDI +—

APB Peripheral Interconnect

StarRISC Architectural Block Diagram
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m StarRISC is supported by a
development kit board
® Power via USB or 9V
® Onboard FTDI JTAG

= And external port
® Onboard flash memory
® ESP32 for wireless access
" & more!

StarRISC Exposed Die & Development Kit Board

4/8/2025 16
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' workspace - cli_test/libs/cli/source/cli_platform.c - CORE-V™-SDK - o X

m StarRISC is supported by a
deve'opment kit board i "\Qf@“ T TR g

' Project Explorer X 207 8T B Gdiplatform.c X B Eoutline X @BuildT.. @Docu.. D
SRR U
. . > 4% Binaries U libs/di/include/clih
POWe r V I a U S B O r 9V > & Includes CLI_printf( "seesssmetok oy n”) o o FreeRTOSh
s &= app CLI_printf("Command Line Interface\n"); u taskh

@ Default CLI printf("%s %s\n", _DATE_, _TIME_ ); U drivers/include/udma_uart_driverh
CLI_printf("App SW Version: %s\n", SOFTWARE_VERSION_STR ); 1 SDKConfigh

. » & drivers CLI_printf("#F% sk mkmmskannninii\n") ; . '
Onboard FTDI JTAG
> = kernel for(;:){ 4 libs/utils/include/dbg_uarth

v 5 di .
15 dli_test CLI_common.timestamps = @;

& libs if( gSimulatorEnabledflg == @ ) A stringh
{ e Cl struct
» = target _common : struct ¢
k = CLI_getkey( le*leee ); . o
= And external port s et .
>[5 FreeRTOSConfig.h continue; +#+ CLI_dispatch(void) : void
> I8 SDKConfigh } ® gSimulatorEnabledFlg : uint8_t
> 8 utils CLI_rx_byte( k ); © gFilterPrintMsgFlg : uints t
. O n b O a rd fI a S h m e m O r = di_build.sh }l = @ gSimulatorCmdTableindex : uint&
- : else e - |
y = cli_test Ashling Opella-LD.launch { &° gSimulatorCmdTable : co [

3 di_test Ashling Opella-LD.launch.bak if( gSimulatorCmdTable[gSimulatorCmdTableIndex] != NULL ) # uart b
xHandleTestCli : TaskH

CLI_time_now(void) : uint32_t
CLI_timeout_start(void) : intptr_t

®

= cli_test hs2.launch A . 3
memcpy( (void *)(&CLI_common.cmdline[@]), gSimulatorCmdTable[gSimulatorCmdT

" ESP32 for wireless access |

/*

°

®

= gdb_run olimex * NOTE: Above dispatch() call might not return! © CLI_beep(void) : void
5 header_sim.bin * Tf an errar accurs. the lane iumn will accur e CLI timeout expired(intptr t, int) : ir
. m I = header.bin =
0 re . & Makefile ¥l Problems X ¥ITasks & Console [ Properties i =8
= openocd-gdbpipe-hs2.cfg 0 errors, 1 warning, 0 others
= openocd-gdbpipe-olimex.cfg Description . Resource Path Location Type

2 openocd-nexys-Ashling-Opella-LD.cfg > & Warnings (1 item)

H As well as an eclipse-based

= openocd-nexys-olimex.cfg
= oppenocd.log

SDK 5 DEAPME o
® GCC support

StarRISC & Core-V-MCU SDK

4/8/2025 17
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m StarRISC utilizes a few techniques to reduce its soft error rate (SER):
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m StarRISC utilizes a few techniques to reduce its soft error rate (SER):
1. 22-nm FD SOI Technology node

"  This node is inherently resilient to SEUs
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m StarRISC utilizes a few techniques to reduce its soft error rate (SER):
1. 22-nm FD SOI Technology node

®  This node is inherently resilient to SEUs

P-well N-well

I Bias -

N+ N+

P-well N-well

STARR-Lab

Semiconductor Technology And
Rad-Effects Research Lab
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m StarRISC utilizes a few techniques to reduce its soft error rate (SER):
1. 22-nm FD SOI Technology node

" This node is inherently resilient to SEEs

Smaller active
area -> less
collected charges

P-well

I Bias -

N+ N+
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m StarRISC utilizes a few techniques to reduce its soft error rate (SER):
1. 22-nm FD SOI Technology node

" This node is inherently resilient to SEEs

Smaller active
area -> less
collected charges

P-well N-well
I Bias I

Electrical isolation
between
transistors

4/8/2025 22



3. Hardening Techniques DO Riosisbivind
1 Rad-Effects Research Lab

m StarRISC utilizes a few techniques to reduce its soft error rate (SER):
1. 22-nm FD SOI Technology node

®  This node is inherently resilient to SEEs

2. ECC Memory
®  SECDED scheme used to repair and monitor for errors
Alterations to uDMA core to auto-correct upsets on memory reads

®  Single Bit Upset & Double Bit Upset counters

4/8/2025 23
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m StarRISC utilizes a few techniques to reduce its soft error rate (SER):
1. 22-nm FD SOI Technology node

®  This node is inherently resilient to SEEs

2. ECC Memory

®  SECDED scheme used to repair and monitor for errors
Alterations to uDMA core to auto-correct upsets on memory reads
®  Single Bit Upset & Double Bit Upset counters

3. Use of SET tolerant buffers
"  Helps reduce transients, and improves timing slack to deal with TID degradation
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m StarRISC utilizes a few techniques to reduce its soft error rate (SER):
1. 22-nm FD SOI Technology node

®  This node is inherently resilient to SEEs

2. ECC Memory

®  SECDED scheme used to repair and monitor for errors
Alterations to uDMA core to auto-correct upsets on memory reads
®  Single Bit Upset & Double Bit Upset counters

3. Use of SET tolerant buffers
"  Helps reduce transients, and improves timing slack to deal with TID degradation

4. Hardened Phase-Lock-Loop CLK generator
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m StarRISC utilizes a few techniques to reduce its soft error rate (SER):
1. 22-nm FD SOI Technology node

®  This node is inherently resilient to SEEs

2. ECC Memory

®  SECDED scheme used to repair and monitor for errors
Alterations to uDMA core to auto-correct upsets on memory reads
®  Single Bit Upset & Double Bit Upset counters

3. Use of SET tolerant buffers
"  Helps reduce transients, and improves timing slack to deal with TID degradation

4. Hardened Phase-Lock-Loop CLK generator
5. Radiation-Hardened storage cells within the core and peripherals
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®  This node is inherently resilient to SEEs

2. ECC Memory

®  SECDED scheme used to repair and monitor for errors

Alterations to uDMA core to auto-correct upsets on memory reads
Single Bit Upset & Double Bit Upset counters
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m Every latch or flip-flop is replaced with our own custom-designed
radiation-hardened storage cells

" All make use of the “Transistor-Stacking” technique
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m Every latch or flip-flop is replaced with our own custom-designed
radiation-hardened storage cells

" All make use of the “Transistor-Stacking” technique

. 1 |-c [ MP1 N
I

(o)

| =

= ; :MNI .
:lf' ﬁ - MPZ:}
A2
Ll_l—_|J MN2|

CLK ~l>w CLK~ ——

Standard Latch
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3. Hardening Techniques N

AN

m Every latch or flip-flop is replaced with our own custom-designed
radiation-hardened storage cells

" All make use of the “Transistor-Stacking” technique

o . .
1 | ] Al
CLK
x| u | MP1 K]  d vipa "
L - o 3
1 CLK — |_ CLKA | Nt
= | MN1 __ = 5
——> i
CLK~ CLK~ MP3| b+
1| o 4 L 1 P
i |J_|-| ) a " MP4| b
A2 A5 —
| -
L|_|J — MN3| |-
MN2 A6 [~
o B ;'; MN4|
CLK ~l>w CLK~ - CLK ~I>c» CLK~ J___
Standard Latch Stacked Transistor Latch
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m Every latch or flip-flop is replaced with our own custom-designed
radiation-hardened storage cells

" All make use of the “Transistor-Stacking” technique

CLK j
D = A2
I | L. 3_
i —
L
CLK CLK MN4
CLK ~I>CP CLK~ - CLK ~I>% CLK~ J___
Standard Latch Stacked Transistor Latch
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m At the transistor layout level, we also make changes to the design to
induce more complex charge-collections?

® Which reduce the amplitude of voltage transients

FF Comparison Table

Power Usage | CLK-Q Delay Cell Area LET
(n.u) Threshold
(Mev-cmZ/m
8)
Standard Cell 1 1 1 ~1
Hardened 1.4 1.4 1.6 >120
Cell

With moderate performance penalties we can obtain extremely hardened cells

Z. Li et al., "Efficacy of Transistor Stacking on Flip-Flop SEU Performance at 22-
nm FDSOI Node," in IEEE Transactions on Nuclear Science

4/8/2025 32




4. Experimental Setups & Results Sz | STARR LD

/I\ Rad-Effects Research Lab

H For all irradiation experiments the same test setup was used:

UART JTAG HS2

StarRISC >

Monitoring PC

B A test program sends out data logs to be monitored for events

B Extra data about the device can be dumped through the JTAG port and
saved via the SDK

4/8/2025 33
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B The testing software [ J; ]

used runs a variety of
tests monitoring
various functionality
of the device

® Can be configured
between looped, and
non-looped modes
B SBU and DBU counts
are logged after each

unit test |
Test Software Flow

A

Matriz Benchmark

3

4/8/2025 34
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B Alpha particle irradiation was performed at USask

B Proton experiments were conducted at TRIUMF using 150 MeV
protons

B Heavy lon experiments were done at TAMU

® 1E4 particles/cm? flux rate

lons used @ TAMU

Linear Ener Range in Si (um 3
= s Al TRIUMF L‘ [T b’g

Transfer .L - ‘ W‘qﬂ“"

(MeV-cm?/mg) ,, ‘. ". =
Cu 18.4 155 * ,gw :
Kr 30.1 149

TAMU = éljbc
Ag 43.5 130 ; %

Pr 64.1 135

4/8/2025 35
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4. Experimental Results — Alpha Particle e

B We use an Am-241 source placed
directly over the die

B For non-looped testing, no failures or
crashed observed
® 50 SBU/min w/o scrubbing
® 80 SBU/min w/ entire memory scrubbing

® No DBU observed for non-looped
testing

B Some DBUs in unused memory if
scrubbed after many hours of
irradiation

4/8/2025 36
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4. Experimental Results — Protons ._3:{,::_.

B Device was tested with 105 MeV protons up to a combined fluence of
1E12 particles/cm?

B Average SBU rate of -
7/minute — non-looped no ’gB
scrub "

" No DBUs
B No functional failures or A

crashes for either software
mode

b
B No increased current draw or 9, | - bid
failures up to 200 kRad StarRISC undergoing proton testing @ TRIUMF

4/8/2025 37
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B For non-looped testing no
functional failures or crashes
detected up to an LET of 96.3
MeV-cm?/mg

® Tested fluence up to 1E7

B Looped testing presented
system failures at every LET
tested

B DBUs became much more . 7 :
prevalent StarRISC undergoing Heavy lon Testing @ TAMU

4/8/2025 38



Cross-Section (cm?/bit)

4. Experimental Results — Heavy lons S | otat,
1

Rad-Effects Research Lab

Overall Device SEFI Cross-

SRAM SBU Cross-Section Section & DBU Cross-
Per Bit Vs. LET Sections Vs. LET
* 2.51 I SEFI Cross-Section
- @ DBU Cross-Section
107401 < Ez.o-
£.s.
@
‘3 1.01
V0.5
0] | | . | | | oL 1 | =
0 10 20 30 40 50 60 18.4 30.10 43.5 64.1 96.3
LET (MeV-cm?/mg) LET (MeV-cm?/mg)
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4. Experimental Results — Heavy lons S

Time Taken for Each Unit
Test

Percentage of Unit Tests
Resulting in SEFIs

Tests
Matrix Test (15.3%)
Misc Instructions (23.9%)
Timers (17.9%)
GPIO Events (14.7%)
GPIO Interrupts (0.8%)
GPIO Data (0.8%)
Memory Test (25.8%)
SPI (0.4%)
UART (0.4%)

Tests
[ Matrix Test (4.8%)
= Misc Instructions (0.0%)
B Timers (52.4%)
[ GPIO Events (14.3%)
[ GPIO Interrupts (0.0%)
[ GPIO Data (9.5%)
=3 Memory Test (4.8%)
B SPI (4.8%)
B UART (9.5%)

QOO0 N0g
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Percent Breakdown of Error Descriptions of Errors Seen During Testing
Codes Seen DEVICE DESCRIPTION & LIKELY CAUSE

ERROR CODE

RTOS Task Fail PortASM Fail

Semaphore Fail

2o o] T GLOBAL EXCEPTION HAS BEEN RAISED. MIACHINE PROGRAM COUNTER,
OR INSTRUCTION CODE IS UNDEFINED OR NULL.

PORTASM ERROR DURING CONTEXT SWITCHING OR REGISTER SERVICE ROUTINES.
FAILURE LOADED REGISTER VALUES ARE NULL OR UNDEFINED.

([ ee) el PRIORITY VALUES FOR TASKS WITHIN FREERTOS ARE IN UNDEFINED OR
FAILURE NULL STATE

SEMAPHORE QUEUE POINTER IN FREERTOS IS IN A UNDEFINED OR NULL STATE.
FAILURE

IS Exception

4/8/2025 41
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B Proton Testing:

" No failures for either testing mode

" Very few memory errors
" TID tolerance up to 200 kRad

H Heavy lon Testing:
® Failures only for looped testing at every LET

® DBUs occur at every LET, but the SEFI cross-section stays relatively constant
® Most SEFIs can be related to corrupted device memory

4/8/2025 42
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m Device SEFI rate tends to be more dependent on the testing software
rather than particle LET

" Non-looped testing routinely scrubs active memory space
" Looped testing allows for accumulated memory upsets
B This suggests that accumulated memory errors contribute to device
failures
" The core and peripherals are assumed to be exceptionally hard
B Understanding the failure rate of the device due to SEUs depends on
more than LET
® Per bit cross-section
® Particle flux rate
® Average memory access time & scrub

4/8/2025 43



STARR-Lab

Semiconductor Technology And
Rad-Effects Research Lab

5. Concluding Remarks — Future Work ._3}:,::_.

B We are working on developing a probabilistic model that considers
these factors to better predict SEFI rates

4/8/2025 a4
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B We are working on developing a probabilistic model that considers
these factors to better predict SEFI rates

H Pulsed Laser injection testing
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B We are working on developing a probabilistic model that considers
these factors to better predict SEFI rates

H Pulsed Laser injection testing
B Microbeam testing at ANSTO
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B We are working on developing a probabilistic model that considers
these factors to better predict SEFI rates

H Pulsed Laser injection testing
B Microbeam testing at ANSTO Allows us to

selectively irradiate
the core and
memory blocks

4/8/2025 47
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B We are working on developing a probabilistic model that considers
these factors to better predict SEFI rates

H Pulsed Laser injection testing
B Microbeam testing at ANSTO
B Payload aboard the next gen USask cube satellite
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B We are working on developing a probabilistic model that considers
these factors to better predict SEFI rates

H Pulsed Laser injection testing

B Microbeam testing at ANSTO

B Payload aboard the next gen USask cube satellite
B Potential commercialization

4/8/2025 49
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Thank You to our Collaborators! ..3}:,:5_.
Il ®N$£nc
CRSNG
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< QuicklLogic

MICROSYSTEMS

..'l"li'l
‘aiiuaauﬁ!l

|
g
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q
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