

Efficacy of Radiation Hardening by Design Techniques on an ASIC 32-bit RISC-V Microcontroller

<u>C. J. Elash¹,</u> Z. R. Li¹, J. Xing¹, P. Pour Momen¹, D. Ramaswami¹, D. Lambert¹, J. Cardenas Chavez¹, R. Fung², S.-J. Wen², Greg Martin³, L. Chen¹

¹University of Saskatchewan, SK, Canada ²Cisco Systems, CA, USA ³QuickLogic Corporation, CA, USA

Presentation to

Workshop April 2-3, 2025 | Gothenburg

The RISC-V ISA has made large strides in the space industry recently

Singe Event Effects (SEEs) continue to be a significant reliability issue

- And continue to get worse as technology nodes scale down!
- More work is needed to understand how best to harden and evaluate devices for high reliability situations

	Substrate		
Channel	Bulk	SOI^\dagger	
Planar	Bulk-Planar •	SOI-Planar	
Fin*	Bulk-Fin 🔺	SOI-Fin 🛇	

[†] Includes similar substrate structures such as SOS.

* Includes similar three-dimensional channel structures such as a tri-gate.

D. Kobayashi, in IEEE Transactions on Nuclear Science, Feb. 2021,

- In digital systems transient pulses from particles can manifest into a Single Event Upsets (SEUs)
- **SET** \rightarrow SEU (Bit-Flip)

- In digital systems transient pulses from particles can manifest into a Single Event Upsets (SEUs)
- SET → SEU (Bit-Flip)

Bit-flips in complex devices, such as microcontrollers, can result in a variety of device failures

Bit-flips in complex devices, such as microcontrollers, can result in a variety of device failures

- Corrupted Data
- Unintended program jumps
- Device halts
- Complete System Crashes
- Etc

Construction of the second seco

Bit-flips in complex devices, such as microcontrollers, can result in a variety of device failures

- Corrupted Data
- Unintended program jumps
- Device halts
- Complete System Crashes
- Etc

For radiation rich environments, like space, companies provide suitable devices to mitigate the possibility of these errors

TI TMS570-SEP

- 30 kRad
- SEL > 43 Mev·cm²/mg
- 300 MHz Clock

Vorago VA41630

- 200 kRad
- SEL > 110 Mev·cm²/mg
- 100 MHz Clock

Microchip VA41630

- 30 kRad
- SEL > 62 Mev·cm²/mg
- 84 MHz Clock

TI TMS570-SEP

- 30 kRad
- SEL > 43 Mev·cm²/mg
- 300 MHz Clock

Vorago VA41630

- 200 kRad
- SEL > 110 Mev·cm²/mg
- 100 MHz Clock

Microchip VA41630

- 30 kRad
- SEL > 62 Mev·cm²/mg
- 84 MHz Clock

Most commercially available devices use ARM – not RISC-V!

TI TMS570-SEP

- 30 kRad
- SEL > 43 Mev·cm²/mg
- 300 MHz Clock

Vorago VA41630

- 200 kRad
- SEL > 110 Mev·cm²/mg
- 100 MHz Clock

Microchip VA41630

- 30 kRad
- SEL > 62 Mev·cm²/mg
- 84 MHz Clock

Most commercially available devices use ARM – not RISC-V!

SEU performance data is limited, or not provided – how is the device hardened?

2. Device Overview

STARR-Lab Semiconductor Technology And Rad-Effects Research Lab

StarRISC is radiation-tolerant RISC-V microcontroller device

- Built using Global Foundries 22nm FD SOI technology
- Utilizes open-source designs, and custom-designed rad-hardened components
 - Built upon the CORE-V-MCU Project¹

¹https://docs.openhwgroup.org/projects/core-v-mcu/doc-src/overview.html

- The device features a small and efficient 32-bit core from OpenHW Foundation²
- The core is fully opensource, with configurable options

OpenHW CV32E40P Architectural Block Diagram

StarRISC is a full System-**On-Chip device**

- 512 KB of ECC SRAM
- UART x2, I2C x2, QSPI x2, GPIO x32
- Internal SEU counters
- PWM & Timers
- FreeRTOS Support
- On-board hardened PLL
 - Up to ~300 MHz

StarRISC Architectural Block Diagram

2. Device Overview

Semiconductor Technology And Rad-Effects Research Lab

StarRISC is supported by a development kit board

- Power via USB or 9V
- Onboard FTDI JTAG
 - And external port
- Onboard flash memory
- ESP32 for wireless access

& more!

StarRISC Exposed Die & Development Kit Board

Semice Rad

StarRISC is supported by a development kit board

- Power via USB or 9V
- Onboard FTDI JTAG
 - And external port
- Onboard flash memory
- ESP32 for wireless access
- & more!
- As well as an eclipse-based SDK
 - GCC support

workspace - cli_test/libs/cli/source/cli_platform.c -	CORE-V™-SDK						- 0	×
le Edit Source Refactor Navigate Search	Project Run Window Linux Help							
▼ 🔛 🐚 🕸 ▼ 🐔 ▼ 🛗 ! 💣 ▼ 🚳 ▼ 诸 ▼ 🚱 ▼ 📑	🎄 🔻 🗿 🔻 🤷 📌 💷 🔌 🕹 🗾 🖗 🗐 👖 🐓	▼ ₩ ▼ ♥ ♥ ♥ ♥ ♥ ▼					Q	i 🗈 📴
Project Explorer × 🛛 🖻 🕏 🍸 🕴	□ □ li_platform.c ×				- 8	🗄 Outline × 💿 Build	T 🔓 Docu	- 6
😂 cli_test	CLT common timestamps - A						🖹 🖓 👷 🗙	• # 8
> 🗱 Binaries	CLI_common.clmestamps = 0,					libs/cli/include/	cli.h	
> 🔊 Includes	CLI_printf("#************************************	*****\n");				FreeRTOS.h		
> 🗁 app	CLI_printf("Command Line Int	CLI_printf("Command Line Interface\n");				task.h		
> 🗁 Default	CLI_printf("%s %s\n",DATE	E,TIME);				drivers/include/udma_uart_driver.hSDKConfig.h		
> 🗁 drivers	CLI_printt(App SW Version: CLI_printf("#************************************	%S\N , SUFIWARE_VERSIU	JN_STR);					
> 🗁 hal	CLI print prompt();	(11 /)				setjmp.h		
> 🗁 kernel	for(;;){	<pre>for(;;){ if(gSimulatorEnabledFlg == 0)</pre>			libs/utils/include/dbg_uart.h			
> 🗁 libs	if(gSimulatorEnabledFlg					string.h		
> 🗁 target	$\{$			 CLI_common : struct cli SOFTWARE_VERSION_STR : const c 				
> 🖻 FreeRTOS.h	<pre>k = CL1_getKey(10~1000); if(k == FOF){</pre>							
> 🖻 FreeRTOSConfig.h	continue;					+ CLI_dispatch(vo	vid) : void	- 1
> 🖻 SDKConfig.h	}					 gSimulatorEnal 	bledFlg : uint8	<u>∎</u> t
> 😆 utils	CLI_rx_byte(k);					gFilterPrintMsg	Flg : uint8_t	- 1
🗎 cli_build.sh	} else				-	 gSimulatorCmo 	TableIndex : u	uint8_t
🗎 cli_test Ashling Opella-LD.launch	{					• gSimulatorCmo	Table : const (char*[]
🗎 cli_test Ashling Opella-LD.launch.bak	if(gSimulatorCmdTab	ble[gSimulatorCmdTable]	[ndex] != NULL))		⊯ uart_tx()		
🗎 cli_test hs2.launch	{	<pre>{ memcpy((void *)(&CLI_common.cmdline[0]), gSimulatorCmdTable[gSimulatorCmdT CI_directeb())</pre>			xHandleTestCli : TaskHandle_t			
🖹 cli_test hs2.launch.bak	memcpy((void *)				 CLI_time_now(v 	oid) : uint32_t	t	
🗎 gdb_run	CLI_dispatch(); /* /* * NOTE: Above dispatch() call might not return!			 CLI_timeout_sta 	rt(void) : intpt	tr_t		
🗎 gdb_run_olimex				 CLI_beep(void) 	: void			
🗎 header_sim.bin	* If an error occurs, the long jump will occur. • CLI timeout expired(intort t, int):					int) : ir		
🗎 header.bin								
🕼 Makefile	🕄 Problems × 🖉 Tasks 📮 Console 🗔 Propertie	es					7	8 - 8
openocd-gdbpipe-hs2.cfg	0 errors, 1 warning, 0 others							
openocd-gdbpipe-olimex.cfg	Description	Resource	Path	Location	Type			
openocd-nexys-Ashling-Opella-LD.cfg	> 💧 Warnings (1 item)							
openocd-nexys-hs2.cfg								
openocd-nexys-olimex.cfg								
oppenocd.log								

StarRISC & Core-V-MCU SDK

- **1.** 22-nm FD SOI Technology node
 - This node is inherently resilient to SEUs

3. Hardening Techniques

STARR-Lab Semiconductor Technology And Rad-Effects Research Lab

StarRISC utilizes a few techniques to reduce its soft error rate (SER):

- **1.** 22-nm FD SOI Technology node
 - This node is inherently resilient to SEUs

3. Hardening Techniques

STARR-Lab Semiconductor Technology And Rad-Effects Research Lab

StarRISC utilizes a few techniques to reduce its soft error rate (SER):

1. 22-nm FD SOI Technology node

This node is inherently resilient to SEEs

3. Hardening Techniques

STARR-Lab Semiconductor Technology And Rad-Effects Research Lab

StarRISC utilizes a few techniques to reduce its soft error rate (SER):

1. 22-nm FD SOI Technology node

This node is inherently resilient to SEEs

1. 22-nm FD SOI Technology node

This node is inherently resilient to SEEs

2. ECC Memory

- SECDED scheme used to repair and monitor for errors
- Alterations to µDMA core to auto-correct upsets on memory reads
- **Single** Bit Upset & **Double** Bit Upset counters

1. 22-nm FD SOI Technology node

This node is inherently resilient to SEEs

2. ECC Memory

- SECDED scheme used to repair and monitor for errors
- Alterations to µDMA core to auto-correct upsets on memory reads
- Single Bit Upset & Double Bit Upset counters

3. Use of SET tolerant buffers

Helps reduce transients, and improves timing slack to deal with TID degradation

1. 22-nm FD SOI Technology node

- This node is inherently resilient to SEEs
- 2. ECC Memory
 - SECDED scheme used to repair and monitor for errors
 - Alterations to µDMA core to auto-correct upsets on memory reads
 - Single Bit Upset & Double Bit Upset counters

3. Use of SET tolerant buffers

- Helps reduce transients, and improves timing slack to deal with TID degradation
- 4. Hardened Phase-Lock-Loop CLK generator

1. 22-nm FD SOI Technology node

This node is inherently resilient to SEEs

2. ECC Memory

- SECDED scheme used to repair and monitor for errors
- Alterations to µDMA core to auto-correct upsets on memory reads
- Single Bit Upset & Double Bit Upset counters

3. Use of SET tolerant buffers

- Helps reduce transients, and improves timing slack to deal with TID degradation
- 4. Hardened Phase-Lock-Loop CLK generator
- 5. Radiation-Hardened storage cells within the core and peripherals

1. 22-nm FD SOI Technology node

- This node is inherently resilient to SEEs
- 2. ECC Memory
 - SECDED scheme used to repair and monitor for errors
 - Alterations to µDMA core to auto-correct upsets on memory reads
 - Single Bit Upset & Double Bit Upset counters

3. Use of SET tolerant buffers

- Helps reduce transients, and improves timing slack to deal with TID degradation
- 4. Hardened Phase-Lock-Loop CLK generator
- 5. Radiation-Hardened storage cells within the core and peripherals

Every latch or flip-flop is replaced with our own custom-designed radiation-hardened storage cells

All make use of the "Transistor-Stacking" technique

Every latch or flip-flop is replaced with our own custom-designed radiation-hardened storage cells

All make use of the "Transistor-Stacking" technique

Every latch or flip-flop is replaced with our own custom-designed radiation-hardened storage cells

All make use of the "Transistor-Stacking" technique

Stacked Transistor Latch

Every latch or flip-flop is replaced with our own custom-designed radiation-hardened storage cells

All make use of the "Transistor-Stacking" technique

Stacked Transistor Latch

At the transistor layout level, we also make changes to the design to induce more complex charge-collections³

Which reduce the amplitude of voltage transients

FF Type	Power Usage (n.u)	CLK-Q Delay (n.u)	Cell Area (n.u)	LET Threshold (Mev∙cm²/m g)
Standard Cell	1	1	1	~1
Hardened Cell	1.4	1.4	1.6	>120

FF Comparison Table

With moderate performance penalties we can obtain extremely hardened cells

Z. Li *et al.*, "Efficacy of Transistor Stacking on Flip-Flop SEU Performance at 22-nm FDSOI Node," in *IEEE Transactions on Nuclear Science*

For all irradiation experiments the same test setup was used:

A test program sends out data logs to be monitored for events
 Extra data about the device can be dumped through the JTAG port and saved via the SDK

4. Experimental Setups & Results

- The testing software used runs a variety of tests monitoring various functionality of the device
 - Can be configured between looped, and non-looped modes
- SBU and DBU counts are logged after each unit test

Test Software Flow

- Alpha particle irradiation was performed at USask
- Proton experiments were conducted at TRIUMF using 150 MeV protons
- Heavy Ion experiments were done at TAMU
 - 1E4 particles/cm² flux rate

Ions used @ TAMU

lon	Linear Energy Transfer (MeV·cm²/mg)	Range in Si (µm)
Cu	18.4	155
Kr	30.1	149
Ag	43.5	130
Pr	64.1	135

4. Experimental Results – Alpha Particle

- We use an Am-241 source placed directly over the die
- For non-looped testing, no failures or crashed observed
 - 50 SBU/min w/o scrubbing
 - 80 SBU/min w/ entire memory scrubbing
- No DBU observed for non-looped testing
- Some DBUs in unused memory if scrubbed after many hours of irradiation

- Device was tested with 105 MeV protons up to a combined fluence of 1E12 particles/cm²
- Average SBU rate of 7/minute – non-looped no scrub
 - No DBUs
- No functional failures or crashes for either software mode
- No increased current draw or failures up to 200 kRad

StarRISC undergoing proton testing @ TRIUMF

- For <u>non-looped</u> testing no functional failures or crashes detected up to an LET of 96.3 MeV·cm²/mg
 - Tested fluence up to 1E7
- Looped testing presented system failures at every LET tested
- DBUs became much more prevalent

StarRISC undergoing Heavy Ion Testing @ TAMU

4. Experimental Results – Heavy Ions

Time Taken for Each Unit Test

Percentage of Unit Tests Resulting in SEFIs

STARR-Lab

Semiconductor Technology And Rad-Effects Research Lab

Proton Testing:

- No failures for either testing mode
- Very few memory errors
- TID tolerance up to 200 kRad

Heavy Ion Testing:

- Failures only for <u>looped</u> testing at every LET
- DBUs occur at every LET, but the SEFI cross-section stays relatively constant
- Most SEFIs can be related to corrupted device memory

Device SEFI rate tends to be more dependent on the testing software rather than particle LET

- Non-looped testing routinely scrubs active memory space
- Looped testing allows for accumulated memory upsets

This suggests that accumulated memory errors contribute to device failures

The core and peripherals are assumed to be exceptionally hard

Understanding the failure rate of the device due to SEUs depends on more than LET

Per bit cross-section

Particle flux rate

Average memory access time & scrub

We are working on developing a probabilistic model that considers these factors to better predict SEFI rates

- We are working on developing a probabilistic model that considers these factors to better predict SEFI rates
- Pulsed Laser injection testing

- We are working on developing a probabilistic model that considers these factors to better predict SEFI rates
- Pulsed Laser injection testing
- Microbeam testing at ANSTO

We are working on developing a probabilistic model that considers these factors to better predict SEFI rates

Pulsed Laser injection testing

Microbeam testing at ANSTO

Allows us to selectively irradiate the core and memory blocks

- We are working on developing a probabilistic model that considers these factors to better predict SEFI rates
- Pulsed Laser injection testing
- Microbeam testing at ANSTO
- Payload aboard the next gen USask cube satellite

- We are working on developing a probabilistic model that considers these factors to better predict SEFI rates
- Pulsed Laser injection testing
- Microbeam testing at ANSTO
- Payload aboard the next gen USask cube satellite
- Potential commercialization

Thank You to our Collaborators!

STARR-Lab

Semiconductor Technology And

