
RVMC/NOEL3
A new RISC-V
microcontroller CPU core

2025-04-02

PUBLIC
2

Agenda

1 Overview

2 NOEL3 configurations

3 IP cores ecosystem

4 Fault tolerance features

5 Software ecosystem

PUBLIC
3

RVMC – NOEL3

• Developing microcontroller as part of

RISC-V Hardware/Software

Ecosystem under the name of

RVMC, RISC-V Microcontroller

• RVMC will be available as part of

ESA IP core portfolio

• Frontgrade Gaisler will make a

commercially available version

under product name NOEL3

PUBLIC
4

NOEL3 – RISC-V processor IP core

Performance

• CoreMark*/MHz (per thread): 0.9**

** Per formace may change

* -O3 -finline-functions --param max-inline-insns-auto=20 --param inline-min-speedup=10 -funswitch-loops -funroll-all-loops -fgcse-after-reload -fpredictive-

commoning -fipa-cp-clone -falign-jumps=8 -falign-functions=8 --param=l1-cache-line-size=32 --param=l1-cache-size=62 -mcmodel=medany -static -

std=gnu99 -ffast-math -ffreestanding -fno-common -fno-builtin-prin tf -fno-tree-loop-distribute-patterns -march=rv32i_zmmul_zicsr -mabi=ilp32 -nostartfiles

-lm -lgcc -T ../r iscv64-baremeta l/link.ld -I../riscv64-baremeta l -I. -DFLAGS_STR=\""-O3 -finline-functions --param max-inline-insns-auto=20 --param inline-

min-speedup=10 -funswitch-loops -funroll-all-loops -fgcse-after-reload -fpredictive-commoning -fipa-cp-clone -falign-jumps=8 -falign-functions=8 --

param=l1-cache-line-size=32 --param=l1-cache-size=62 -mcmodel=medany -static -std=gnu99 -ffast-math -ffreestanding -fno-common -fno-builtin-prin tf -

fno-tree-loop-distribute-patterns -march=rv32i_zmmul_zicsr -mabi=ilp32 -nostartfiles -lm -lgcc -T ../r iscv64-baremetal/link.ld -Wno-implicit-int -Wno-

implicit-function-declaration

Characteristics:

• RISC-V processor core (32-bits)

• Barrel architecture

• Deterministic, in-order pipeline

• Fault tolerance features

• Small area footprint, suitable also for very small

FPGAs

• RISC-V software and tool support, plus our own

ecosystem and toolchains

Primary features:

• RV32IMAFCB

• Suitable for RTOS

• Configurable number of threads

• Internal tightly-coupled memories

• AHB and deterministic bus support

https://www.gaisler.com/risc-v-software-overview
https://www.gaisler.com/risc-v-software-overview

PUBLIC

5

NOEL3 – Barrel processor

Barrel architecture?

• Fine-grained multithreading processor

• Only one instruction per thread is executed in
the pipeline at the same time

• Number of stages = Number of threads

Why barrel architecture?

• Small area

• No data dependencies/forwarding, no branch

prediction, no speculation

• Easier verification

• Mostly 1-iteration instructions

• In-order pipeline, instruction retires before next one
starts

• High multithreading performance

TH4 TH3 TH2 TH1 TH0

PUBLIC

6

NOEL3 – Barrel processor

Barrel architecture?

• Fine-grained multithreading processor

• Only one instruction per thread is executed in
the pipeline at the same time

• Number of stages = Number of threads

Why barrel architecture?

• Small area

• No data dependencies/forwarding, no branch

prediction, no speculation

• Easier verification

• Mostly 1-iteration instructions

• In-order pipeline, instruction retires before next one
starts

• High multithreading performance

TH0 TH4 TH3 TH2 TH1

PUBLIC

7

NOEL3 – Barrel processor

Barrel architecture?

• Fine-grained multithreading processor

• Only one instruction per thread is executed in
the pipeline at the same time

• Number of stages = Number of threads

Why barrel architecture?

• Small area

• No data dependencies/forwarding, no branch

prediction, no speculation

• Easier verification

• Mostly 1-iteration instructions

• In-order pipeline, instruction retires before next one
starts

• High multithreading performance

TH1 TH0 TH4 TH3 TH2

PUBLIC

8

NOEL3 – Barrel processor

Barrel architecture?

• Fine-grained multithreading processor

• Only one instruction per thread is executed in
the pipeline at the same time

• Number of stages = Number of threads

Why barrel architecture?

• Small area

• No data dependencies/forwarding, no branch

prediction, no speculation

• Easier verification

• Mostly 1-iteration instructions

• In-order pipeline, instruction retires before next one
starts

• High multithreading performance

TH2 TH1 TH0 TH4 TH3

PUBLIC

9

NOEL3 – Barrel processor

Barrel architecture?

• Fine-grained multithreading processor

• Only one instruction per thread is executed in
the pipeline at the same time

• Number of stages = Number of threads

Why barrel architecture?

• Small area

• No data dependencies/forwarding, no branch

prediction, no speculation

• Easier verification

• Mostly 1-iteration instructions

• In-order pipeline, instruction retires before next one
starts

• High multithreading performance

TH3 TH2 TH1 TH0 TH4

PUBLIC

10

NOEL3 – Barrel processor

Barrel architecture?

• Fine-grained multithreading processor

• Only one instruction per thread is executed in
the pipeline at the same time

• Number of stages = Number of threads

Why barrel architecture?

• Small area

• No data dependencies/forwarding, no branch

prediction, no speculation

• Easier verification

• Mostly 1-iteration instructions

• In-order pipeline, instruction retires before next one
starts

• High multithreading performance

TH4 TH3 TH2 TH1 TH0

PUBLIC

11

NOEL3 – Barrel processor

Barrel architecture?

• Fine-grained multithreading processor

• Only one instruction per thread is executed in
the pipeline at the same time

• Number of stages = Number of threads

Why barrel architecture?

• Small area

• No data dependencies/forwarding, no branch

prediction, no speculation

• Easier verification

• Mostly 1-iteration instructions

• In-order pipeline, instruction retires before next one
starts

• High multithreading performance

TH0 TH4 TH3 TH2 TH1

PUBLIC

12

NOEL3 – Barrel processor

Barrel architecture?

• Fine-grained multithreading processor

• Only one instruction per thread is executed in
the pipeline at the same time

• Number of stages = Number of threads

Why barrel architecture?

• Small area

• No data dependencies/forwarding, no branch

prediction, no speculation

• Easier verification

• Mostly 1-iteration instructions

• In-order pipeline, instruction retires before next one
starts

• High multithreading performance

TH1 TH0 TH4 TH3 TH2

PUBLIC

13

NOEL3 – Barrel processor

Barrel architecture?

• Fine-grained multithreading processor

• Only one instruction per thread is executed in
the pipeline at the same time

• Number of stages = Number of threads

Why barrel architecture?

• Small area

• No data dependencies/forwarding, no branch

prediction, no speculation

• Easier verification

• Mostly 1-iteration instructions

• In-order pipeline, instruction retires before next one
starts

• High multithreading performance

TH2 TH1 TH0 TH4 TH3

PUBLIC PUBLIC
14

NOEL3 primary features

PUBLIC
15

NOEL3 – Primary features

• In-order pipeline, barrel architecture

• Deterministic execution

• Fault tolerance

• Configurable number of threads

• Internal tightly-coupled memories

• Configurable size and architecture

• Accessible from the outside

• AHB interface

• Deterministic bus interface

• RISC-V standard debug module (GRMON and 3rd

party RISC-V debuggers)

• Custom deterministic accelerator interface

• CSR in BRAM

• CV-X-IF (not planned for first release)

• https://www.gaisler.com/products/noel3

https://www.gaisler.com/products/noel3

PUBLIC

NOEL3 – Determinism

16

Why?

• Real-time systems

• System predictability

What?

• Accurate, predictable execution time regardless
of what other threads are doing

• Threads do not affect each other execution-wise

• Access to deterministic bus peripherals

What?

• Accesses to external memory
• TCMs should suffice

• Interrupts

• Response time is bounded

• Possibility to allocate one of the threads to only service
interrupts

• AHB accesses

How?

• TCMs

• Deterministic bus interface

• Time slotted accelerator interface

PUBLIC
17

NOEL3 comparison

More NOEL3 configurations will be

available.

TCM – Tightly Coupled Memory.

Directly connected to the CPU for

low latency and predictable timing

Compressed –

RISC-V 16-bits instructions to

reduce the size of compiled

programs

Atomics – RISC-V instructions for

atomic operations, crucial for multi-

threaded and multi-core processing

Bit Manipulation – RISC-V

instructions to directly manipulate

individual bits or groups of bits,

improving performance and code

density

Architecture RV32I RV32IZmmul RV32IMAFCBZfhZfa

Hardware execution

threads

3+1 3+1 6+1

Tightly Coupled

Memory

32+ 8 KB 256+256 KB 256+256 KB

Floating point No No Yes

Multiply/Divide No Multiply Yes

Atomics No No Yes

Max frequency 208 MHz 202 MHz TBD

CoreMark/MHz (for

each thread)

0.35 0.9 TBD

LUTs 1.5k 1.8k TBD

BRAMs 32 134 TBD
Example implementation figures for a Kintex Ultrascale FPGA. The figures have been extracted for the current

development stage and are subject to change.

PUBLIC PUBLIC
18

IP cores ecosystem

PUBLIC
19

NOEL3 – IP ecosystem

• Memory controllers (with EDAC):

• PROM/IO/SRAM/SDRAM

• SINGLE/DUAL/QUAD SPI

• DDR2/DDR3 SDRAM

• NAND Flash memory controller

• Peripherals:

• UART

• SpaceWire (controller/router)

• High Speed Serial Links (SpaceFibre,
Wizardlink)

• 32-bit master/target PCI interface

• MIL-STD-1553B

• CAN, CAN FD

• Gbit Ethernet
• FPGA supervisor

• …and many more, see

https://www.gaisler.com/grlib-ip-library

DDR2/3 SDRAM

controller

PROM

controller

SPI

controller

NAND flash

controller

CAN/CAN FD

MIL-STD-1553BGbit Ethernet

32-bit PCI

master/target

SpaceWire

High Speed

Serial Links

UART

https://www.gaisler.com/grlib-ip-library

PUBLIC PUBLIC
20

Fault tolerance features

PUBLIC
21

NOEL3 Fault tolerance

SECDED ECC:

• Protection of memory blocks (tightly coupled

memories, register files) using error-correcting codes

• Two means of protection are supported:

• Native ECC in FPGA fabric (Frontgrade Certus,

AMD 7-series/Ultrascale/Versal, Microchip

RTG4/Polarfire, NanoXplore)

• Generic RTL-based ECC (ASIC, other

technologies)

• Protection of flip-flops and logic is left to the underlying

technology

• Rad-hard FPGAs and ASIC libraries

• TMR for SRAM-based FPGAs

Scrubbing:

• TCMs hardware scrubber

• Register file hardware scrubber

Memory

Block

ECC

encoder

Detect

&

correct

PUBLIC PUBLIC
22

Software ecosystem

PUBLIC
23

NOEL3 Software ecosystem

Hardware debugger:

• RISC-V standard specification

• GRMON4

Target software:

• Planned examples for software to take
advantage of deterministic
multithreading

• Planned RTEMS

• Planned Zephyr ports

PUBLIC
24

NOEL3 Availability

• First implementation of RV32IZmmul
running software

• Development continues with planned
efforts on verification and feature
additions

• Target release of RV32IMAFCBZfhZfa
is Q3 2025

• Sign up to our newsletter to receive
updates, www.gaisler.com/newsletter

http://www.gaisler.com/newsletter

	Slide 1: RVMC/NOEL3 A new RISC-V microcontroller CPU core
	Slide 2: Agenda
	Slide 3: RVMC – NOEL3
	Slide 4: NOEL3 – RISC-V processor IP core
	Slide 5: NOEL3 – Barrel processor
	Slide 6: NOEL3 – Barrel processor
	Slide 7: NOEL3 – Barrel processor
	Slide 8: NOEL3 – Barrel processor
	Slide 9: NOEL3 – Barrel processor
	Slide 10: NOEL3 – Barrel processor
	Slide 11: NOEL3 – Barrel processor
	Slide 12: NOEL3 – Barrel processor
	Slide 13: NOEL3 – Barrel processor
	Slide 14
	Slide 15: NOEL3 – Primary features
	Slide 16: NOEL3 – Determinism
	Slide 17: NOEL3 comparison
	Slide 18
	Slide 19: NOEL3 – IP ecosystem
	Slide 20
	Slide 21: NOEL3 Fault tolerance
	Slide 22
	Slide 23: NOEL3 Software ecosystem
	Slide 24: NOEL3 Availability

